8 research outputs found

    Protection Against Influenza A(H5N1) by Primary Infection with Influenza A(H3N2) and MVA-based Vaccination

    Get PDF
    Influenza A viruses belong to the family of the orthomyxoviridae that consists of five genera: Thogoto virus, Isavirus and Influenza virus A, B and C. The generae of influenza viruses are distinguished based on their membrane channel protein, genome size and surface glycoprotein(s).[1] Influenza A viruses are classified based on their surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA). So far 16 HA subtypes and 9 NA subtypes have been identified based on genetic and antigenic analysis.[2] The nomenclature of influenza viruses is based on: subtype, host of origin (except humans), isolation site (geographical), strain number, year of isolation and followed by the description of the antigenic subtype, e.g. A/Chicken/ Netherlands/1/03 (H7N7)

    Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis

    No full text
    A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform.The purpose of this study, to evaluate commercial potential of the MVA platform

    Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses

    No full text
    Virus-specific CD8+ T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8+ T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8+ T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8+ T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses

    Differential recognition of influenza A viruses by M158-66 epitopespecific CD8+ T cells is determined by extraepitopic amino acid residues

    No full text
    Natural influenza A virus infections elicit both virus-specific antibody and CD4+ and CD8+ T cell responses. Influenza A virusspecific CD8+ cytotoxic T lymphocytes (CTLs) contribute to clearance of influenza virus infections. Viral CTL epitopes can display variation, allowing influenza A viruses to evade recognition by epitope-specific CTLs. Due to functional constraints, some epitopes, like the immunodominant HLA-A*0201-restricted matrix protein 1 (M158-66) epitope, are highly conserved between influenza A viruses regardless of their subtype or host species of origin. We hypothesized that human influenza A viruses evade recognition of this epitope by impairing antigen processing and presentation by extraepitopic amino acid substitutions. Activation of specific T cells was used as an indication of antigen presentation. Here, we show that the M158-66 epitope in the M1 protein derived from human influenza A virus was poorly recognized compared to the M1 protein derived from avian influenza A virus. Furthermore, we demonstrate that naturally occurring variations at extraepitopic amino acid residues affect CD8+ T cell recognition of the M158-66 epitope. These data indicate that human influenza A viruses can impair recognition by M158-66-specific CTLs while retaining the conserved amino acid sequence of the epitope, which may represent a yet-unknown immune evasion strategy for influenza A viruses. This difference in recognition may have implications for the viral replication kinetics in HLA-A*0201 individuals and spread of influenza A viruses in the human population. The findings may aid the rational design of universal influenza vaccines that aim at the induction of cross-reactive virus-specific CTL responses

    Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets

    No full text
    The emergence and subsequent swift and global spread of the swine-origin influenza virus A(H1N1) in 2009 once again emphasizes the strong need for effective vaccines that can be developed rapidly and applied safely. With this aim, we produced soluble, multimeric forms of the 2009 A(H1N1) HA (sHA3) and NA (sNA4) surface glycoproteins using a virus-free mammalian expression system and evaluated their efficacy as vaccines in ferrets. Immunization twice with 3.75-μg doses of these antigens elicited strong antibody responses, which were adjuvant dependent. Interestingly, coadministration of both antigens strongly enhanced the HA-specific but not the NA-specific responses. Distinct patterns of protection were observed upon challenge inoculation with the homologous H1N1 virus. Whereas vaccination with sHA3dramatically reduced virus replication (e.g., by lowering pulmonary titers by about 5 log10units), immunization with sNA4markedly decreased the clinical effects of infection, such as body weight loss and lung pathology. Clearly, optimal protection was achieved by the combination of the two antigens. Our observations demonstrate the great vaccine potential of multimeric HA and NA ectodomains, as these can be easily, rapidly, flexibly, and safely produced in high quantities. In particular, our study underscores the underrated importance of NA in influenza vaccination, which we found to profoundly and specifically contribute to protection by HA. Its inclusion in a vaccine is likely to reduce the HA dose required and to broaden the protective immunity. Copyrigh

    A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model

    No full text
    Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemag-glutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immuno-genic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease

    Virus replication kinetics and pathogenesis of infection with H7N9 influenza virus in isogenic guinea pigs upon intratracheal inoculation

    No full text
    Since 2013, avian influenza viruses of subtype H7N9 have been transmitted from poultry to humans in China and caused severe disease. Concerns persist over the pandemic potential of this virus and further understanding of immunity and transmission is required. The isogenic guinea pig model uniquely would allow for investigation into both. Eighteen female isogenic guinea pigs 12-16 weeks were inoculated intratracheally with either A/H7N9 virus (n = 12) or PBS (n = 6) and sacrificed on days 2 and 7 post-inoculation. Nasal and pharyngeal swabs were taken daily to assess viral replication kinetics and necropsies were performed to study pathogenesis. All animals showed peak virus titers in nasal secretions at day 2 post-inoculation and by day 7 post-inoculation infectious virus titers had decreased to just above detectable levels. At day 2, high virus titers were found in nasal turbinates and lungs and moderate titers in trachea and cerebrum. At day 7, infectious virus was detected in the nasal turbinates only. Histology showed moderate to severe inflammation in the entire respiratory tract and immunohistochemistry (IHC) demonstrated large numbers of viral antigen positive cells in the nasal epithelium at day 2 and fewer at day 7 post-inoculation. A moderate number of IHC positive cells was observed in the bronchi(oli) and alveoli at day 2 only. This study indicates that isogenic guinea pigs are a promising model to further study immunity to and transmission of H7N9 influenza virus

    A single immunization with covaccine HT-adjuvanted H5N1 influenza virus vaccine induces protective cellular and humoral immune responses in ferrets

    No full text
    Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 μg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation. Copyrigh
    corecore