7 research outputs found

    Annotating Nontargeted LC-HRMS/MS Data with Two Complementary Tandem Mass Spectral Libraries

    Get PDF
    Tandem mass spectral databases are indispensable for fast and reliable compound identification in nontargeted analysis with liquid chromatography–high resolution tandem mass spectrometry (LC-HRMS/MS), which is applied to a wide range of scientific fields. While many articles now review and compare spectral libraries, in this manuscript we investigate two high-quality and specialized collections from our respective institutes, recorded on different instruments (quadrupole time-of-flight or QqTOF vs. Orbitrap). The optimal range of collision energies for spectral comparison was evaluated using 233 overlapping compounds between the two libraries, revealing that spectra in the range of CE 20–50 eV on the QqTOF and 30–60 nominal collision energy units on the Orbitrap provided optimal matching results for these libraries. Applications to complex samples from the respective institutes revealed that the libraries, combined with a simple data mining approach to retrieve all spectra with precursor and fragment information, could confirm many validated target identifications and yield several new Level 2a (spectral match) identifications. While the results presented are not surprising in many ways, this article adds new results to the debate on the comparability of Orbitrap and QqTOF data and the application of spectral libraries to yield rapid and high-confidence tentative identifications in complex human and environmental samples

    Annotating Nontargeted LC-HRMS/MS Data with Two Complementary Tandem Mass Spectral Libraries

    No full text
    Tandem mass spectral databases are indispensable for fast and reliable compound identification in nontargeted analysis with liquid chromatography–high resolution tandem mass spectrometry (LC-HRMS/MS), which is applied to a wide range of scientific fields. While many articles now review and compare spectral libraries, in this manuscript we investigate two high-quality and specialized collections from our respective institutes, recorded on different instruments (quadrupole time-of-flight or QqTOF vs. Orbitrap). The optimal range of collision energies for spectral comparison was evaluated using 233 overlapping compounds between the two libraries, revealing that spectra in the range of CE 20–50 eV on the QqTOF and 30–60 nominal collision energy units on the Orbitrap provided optimal matching results for these libraries. Applications to complex samples from the respective institutes revealed that the libraries, combined with a simple data mining approach to retrieve all spectra with precursor and fragment information, could confirm many validated target identifications and yield several new Level 2a (spectral match) identifications. While the results presented are not surprising in many ways, this article adds new results to the debate on the comparability of Orbitrap and QqTOF data and the application of spectral libraries to yield rapid and high-confidence tentative identifications in complex human and environmental samples

    Ultra-fast proteomics with Scanning SWATH

    No full text
    Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quantitative proteomes in combination with short gradients and high-flow (800 \ub5l min ) chromatography. Exploiting a continuous movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisition (DIA) methods on 0.5–5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in fast proteomic experiments that facilitate proteomic drug screens and clinical studies. –

    Microbial communities form rich extracellular metabolomes that foster metabolic interactions and promote drug tolerance.

    Get PDF
    Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic-prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce intracellular drug concentrations, allowing cells to grow in the presence of drug levels above minimal inhibitory concentrations. For example, we show that the antifungal action of azoles is greatly diminished in yeast cells that uptake metabolites from a metabolically enriched environment. Our results hence provide a mechanism that explains why cells are more robust to drug exposure when they interact metabolically

    Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection.

    Get PDF
    The COVID-19 pandemic is an unprecedented global challenge, and point-of-care diagnostic classifiers are urgently required. Here, we present a platform for ultra-high-throughput serum and plasma proteomics that builds on ISO13485 standardization to facilitate simple implementation in regulated clinical laboratories. Our low-cost workflow handles up to 180 samples per day, enables high precision quantification, and reduces batch effects for large-scale and longitudinal studies. We use our platform on samples collected from a cohort of early hospitalized cases of the SARS-CoV-2 pandemic and identify 27 potential biomarkers that are differentially expressed depending on the WHO severity grade of COVID-19. They include complement factors, the coagulation system, inflammation modulators, and pro-inflammatory factors upstream and downstream of interleukin 6. All protocols and software for implementing our approach are freely available. In total, this work supports the development of routine proteomic assays to aid clinical decision making and generate hypotheses about potential COVID-19 therapeutic targets
    corecore