3 research outputs found

    Flow: A Modular Learning Framework for Autonomy in Traffic

    Full text link
    The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, due to numerous technical, political, and human factors challenges, new methodologies are needed to design vehicles and transportation systems for these positive outcomes. This article tackles technical challenges arising from the partial adoption of autonomy: partial control, partial observation, complex multi-vehicle interactions, and the sheer variety of traffic settings represented by real-world networks. The article presents a modular learning framework which leverages deep Reinforcement Learning methods to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (traffic jams, lane changing, intersections). Learned control laws are found to exceed human driving performance by at least 40% with only 5-10% adoption of AVs. In partially-observed single-lane traffic, a small neural network control law can eliminate stop-and-go traffic -- surpassing all known model-based controllers, achieving near-optimal performance, and generalizing to out-of-distribution traffic densities.Comment: 14 pages, 8 figures; new experiments and analysi

    Guardians of the Deep Fog: Failure-Resilient DNN Inference from Edge to Cloud

    Full text link
    Partitioning and distributing deep neural networks (DNNs) over physical nodes such as edge, fog, or cloud nodes, could enhance sensor fusion, and reduce bandwidth and inference latency. However, when a DNN is distributed over physical nodes, failure of the physical nodes causes the failure of the DNN units that are placed on these nodes. The performance of the inference task will be unpredictable, and most likely, poor, if the distributed DNN is not specifically designed and properly trained for failures. Motivated by this, we introduce deepFogGuard, a DNN architecture augmentation scheme for making the distributed DNN inference task failure-resilient. To articulate deepFogGuard, we introduce the elements and a model for the resiliency of distributed DNN inference. Inspired by the concept of residual connections in DNNs, we introduce skip hyperconnections in distributed DNNs, which are the basis of deepFogGuard's design to provide resiliency. Next, our extensive experiments using two existing datasets for the sensing and vision applications confirm the ability of deepFogGuard to provide resiliency for distributed DNNs in edge-cloud networks.Comment: Accepted to ACM AIChallengeIoT 201

    ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

    Full text link
    Federated Learning aims to train distributed deep models without sharing the raw data with the centralized server. Similarly, in distributed inference of neural networks, by partitioning the network and distributing it across several physical nodes, activations and gradients are exchanged between physical nodes, rather than raw data. Nevertheless, when a neural network is partitioned and distributed among physical nodes, failure of physical nodes causes the failure of the neural units that are placed on those nodes, which results in a significant performance drop. Current approaches focus on resiliency of training in distributed neural networks. However, resiliency of inference in distributed neural networks is less explored. We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures. ResiliNet combines two concepts to provide resiliency: skip hyperconnection, a concept for skipping nodes in distributed neural networks similar to skip connection in resnets, and a novel technique called failout, which is introduced in this paper. Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks. The results of the experiments and ablation studies using three datasets confirm the ability of ResiliNet to provide inference resiliency for distributed neural networks.Comment: Accepted in FL-ICML 2020 (International Workshop on Federated Learning for User Privacy and Data Confidentiality in Conjunction with ICML 2020). Added FAQ to the end of the pape
    corecore