29 research outputs found

    Unique intrahepatic transcriptomics profiles discriminate the clinical phases of a chronic HBV infection

    Get PDF
    Chronic hepatitis B is a highly heterogeneous liver disease characterized by phases with fluctuations in viral replication and progressive liver damage in some, but not all infected individuals. Despite four decades of research, insight into host determinants underlying these distinct clinical phases-immunotolerant, immune active, inactive carrier, and HBeAg-negative hepatitis±remains elusive. We performed an in-depth transcriptome analysis of archived FFPE liver biopsies of each clinical phase to address host determinants associated with the natural history. Therefore, we determined, for the first time, intrahepatic global expression profiles of well-characterized chronic HBV patients at different clinical phases. Our data, obtained by microarray, demonstrate that B cells and NK/cytotoxicrelated genes in the liver, including CD19, TNFRSF13C, GZMH, and KIR2DS3, were differentially expressed across the clinical HBV phases, which was confirmed by modular analysis and also Nanostring arrays in an independent cohort. Compared to the immunotolerant phase, 92 genes were differentially expressed in the liver during the immune active phase, 46 in the inactive carrier phase, and 71 in the HBeAg-negative phase. Furthermore, our study also revealed distinctive transcription of genes associated with cell cycle activity, NF-κB signaling, cytotoxic function and mitochondrial respiration between clinical phases. Our data define for the first time using microarray unique transcriptomes in the HBV-infected liver during consecutive clinical phases. We demonstrate that fluctuations of viral loads and liver damage coincide with fluctuations in the liver transcriptome and point to functionalimmune and non-immune-components contributing to the clinical phenotype in patients

    Frequencies of circulating MAIT cells are diminished in chronic hCV, HIV and HCV/ HIV Co-Infection and do not recover during therapy

    Get PDF
    Objective Mucosal-associated invariant T (MAIT) cells comprise a subpopulation of T cells that can be activated by bacterial products and cytokines to produce IFN-γ. Since little is known on MAIT cells during HCV infection, we compared their phenotype and function in comparison to HIV and HCV/HIV co-infected patients, and determined the effect of IFN-α-based and direct-acting antiviral therapy on MAIT cells of HCV patients. Methods Blood samples from patients with chronic HCV (CHCV), virologically suppressed HIV, acute HCV/HIV co-infection (AHCV/HIV) and healthy individuals were examined by flowcytometry for phenotype and function of MAIT and NK cells. Results and Conclusions Compared to healthy individuals, the frequency of CD161+ Vα7.2+ MAIT cells was significantly decreased in patients with CHCV, HIV and AHCV/HIV co-infection. CD38 expression on MAIT cells was increased in AHCV/HIV patients. MAIT cells were responsive to IFN-α in vitro as evidenced by enhanced frequencies of IFN-γ producing cells. IFN-α-based therapy for CHCV decreased the frequency of IFN-γ+ MAIT cells, which was still observed 24 weeks after successful therapy. Importantly, even after successful IFN-α-based as well as IFN-αfree therapy for CHCV, decreased frequencies of MAIT cells persisted. We show that the frequencies of MAIT cells are reduced in blood of patients with CHCV, HIV and in AHCV/ HIV co-infection compared to healthy individuals. Successful therapy for CHCV did not normalize MAIT cell frequencies at 24 weeks follow up. The impact of HIV and HCV infection on the numbers and function of MAIT cells warrant further studies on the impact of viral

    Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages

    No full text
    The immunostimulatory role of Kupffer cells in various inflammatory liver diseases is still not fully understood. In this study, phenotypic and functional aspects of Kupffer cells from healthy C57BL/6 mice were analyzed and compared with those of splenic and peritoneal macrophages to generate a blueprint of the cells under steady-state conditions. In the mouse liver, only one population of Kupffer cells was identified as F4/80(high)CD11b(low) cells. We observed that freshy isolated Kupffer cells are endocytic and show a relatively high basal ROS content. Interestingly, despite expression of TLR mRNA on Kupffer cells, ligation of TLR4, TLR7/8, and TLR9 resulted in a weak induction of IL-10, low or undetectable levels of IL-12p40 and TNF, and up-regulation of CD40 on the surface. Kupffer cells and splenic macrophages show functional similarities, in comparison with peritoneal macrophages, as reflected by comparable levels of TLR4, TLR7/8, and TLR9 mRNA and low or undetectable levels of TNF and IL-12p40 produced upon TLR ligation. The unique, functional characteristics of Kupffer cells, demonstrated in this study, suggest that Kupffer cells under steady-state conditions are specialized as phagocytes to clear and degrade particulates and only play a limited immunoregulatory role via the release of soluble mediators. J. Leukoc. Biol. 92: 723-733; 2012

    Immunological Analysis During Interferon-Free Therapy for Chronic Hepatitis C Virus Infection Reveals Modulation of the Natural Killer Cell Compartment

    No full text
    Background. Chronic hepatitis C virus (HCV) infection is a global health problem, resulting in liver failure, hepatocellular carcinoma, and liver-related death. Natural killer (NK) cells are innate immune cells, and their activity is known to correlate to viral treatment response of HCV. In this study, we investigate the immune effects of viral load decline with direct-acting antivirals (DAAs) in blood. Methods. Twelve patients with chronic HCV were treated with asunaprevir and daclatasvir, and peripheral blood was analyzed at various time points during therapy. Results. In line with previous studies, we confirmed restoration of HCV-specific T-cell frequency upon viral load decline. In addition, we show that serum interferon (IFN)-gamma inducible-protein 10, interleukin (IL)-12p40, and IL-18 levels decreased early after start of therapy. Surface expression of activation receptors NKp30, NKp46, and inhibitory receptor NKG2A on blood NK cells reduced during therapy. In addition, the expression of TRAIL on NK cells was reduced during IFN-free therapy, suggesting a decrease in TRAIL-mediated killing by NK cells. Conclusions. We show that viral load decline as a consequence of treatment with novel DAAs in chronic HCV patients reduces serum levels of NK cell-stimulating cytokines and causes correction of the altered NK cell phenotype observed in chronic HCV patients

    CD4(+)CXCR5(+) T cells in chronic HCV infection produce less IL-21, yet are efficient at supporting B cell responses

    No full text
    Background & Aims: During chronic HCV infection, T cell dependent virus-specific antibodies are produced. However, the role of B-T cell interaction in chronic HCV is largely unknown. CD4(+)CXCR5(+) T follicular helper (T-FH)-cells activate B cells and are important for clearance of various chronic viral infections. We investigated the function of T-FH cells and B cells in liver and in peripheral blood of chronic HCV patients. Methods: T cells from chronic HCV patients and healthy individuals were analysed for expression of CXCR5, PD-1, ICOS, and IL-21 and IFN-gamma production by flow cytometry. CD19(+) B cell subpopulations were identified on the basis of CD27 and IgD expression. In order to assess the frequency and function of T cells and B cells in liver follicles, immunohistochemistry was performed for CD3, CXCR5, Bcl6, IL-21, CD20, IgD, IgM, and IgG. Results: The frequency of IL-21-producing CXCR5(+)CD4(+) T cells in blood was lower in HCV patients compared to healthy individuals (p = 0.002), which was reflected by lower serum IL-21 levels (p < 0.001). Nonetheless, CXCR5(+)CD4(+) T cells from HCV patients and healthy individuals were equally capable to stimulate CD19(+)CD27(+) memory B cells into IgG and IgM-producing plasmablasts. Importantly, human intrahepatic T-FH cells and their related function were identified by immunohistochemistry on liver biopsies for CD3, Bcl6, and CD20 within portal areas and follicles. Conclusions: The specific localization of T-FH cells and IgG and IgD/IgM-producing B cells suggests a functional B-T cell environment in liver follicles during HCV infection. The decreased frequency of IL-21-producing CXCR5(+)CD4(+) T cells and lower serum IL-21 levels in chronic HCV patients did not lead to an altered T-FH-B cell interaction. (C) 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved

    Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages

    No full text
    The immunostimulatory role of Kupffer cells in various inflammatory liver diseases is still not fully understood. In this study, phenotypic and functional aspects of Kupffer cells from healthy C57BL/6 mice were analyzed and compared with those of splenic and peritoneal macrophages to generate a blueprint of the cells under steady-state conditions. In the mouse liver, only one population of Kupffer cells was identified as F4/ 80highCD11blow cells. We observed that freshy isolated Kupffer cells are endocytic and show a relatively high basal ROS content. Interestingly, despite expression of TLR mRNA on Kupffer cells, ligation of TLR4, TLR7/8, and TLR9 resulted in a weak induction of IL-10, low or undetectable levels of IL-12p40 and TNF, and up-regulation of CD40 on the surface. Kupffer cells and splenic macrophages show functional similarities, in comparison with peritoneal macrophages, as reflected by comparable levels of TLR4, TLR7/8, and TLR9 mRNA and low or undetectable levels of TNF and IL-12p40 produced upon TLR ligation. The unique, functional characteristics of Kupffer cells, demonstrated in this study, suggest that Kupffer cells under steady-state conditions are specialized as phagocytes to clear and degrade particulates and only play a limited immunoregulatory role via the release of soluble mediators

    Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct

    No full text
    Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro-and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis
    corecore