6,960 research outputs found

    Complex Behavior in Simple Models of Biological Coevolution

    Full text link
    We explore the complex dynamical behavior of simple predator-prey models of biological coevolution that account for interspecific and intraspecific competition for resources, as well as adaptive foraging behavior. In long kinetic Monte Carlo simulations of these models we find quite robust 1/f-like noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of quiet periods of relative evolutionary stasis. In one model, based on the Holling Type II functional response, adaptive foraging produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 8 pages, 5 figure

    Analysis and design of a flat central finned-tube radiator

    Get PDF
    Computer program based on fixed conductance parameter yields minimum weight design. Second program employs variable conductance parameter and variable ratio of fin length to tube outside radius, and is used for radiator designs with geometric limitations. Major outputs of the two programs are given

    Solar thermal

    Get PDF

    On Matrix Product States for Periodic Boundary Conditions

    Full text link
    The possibility of a matrix product representation for eigenstates with energy and momentum zero of a general m-state quantum spin Hamiltonian with nearest neighbour interaction and periodic boundary condition is considered. The quadratic algebra used for this representation is generated by 2m operators which fulfil m^2 quadratic relations and is endowed with a trace. It is shown that {\em not} every eigenstate with energy and momentum zero can be written as matrix product state. An explicit counter-example is given. This is in contrast to the case of open boundary conditions where every zero energy eigenstate can be written as a matrix product state using a Fock-like representation of the same quadratic algebra.Comment: 7 pages, late

    Optically probing the fine structure of a single Mn atom in an InAs quantum dot

    Full text link
    We report on the optical spectroscopy of a single InAs/GaAs quantum dot (QD) doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A^0 whose effective spin J=1 is significantly perturbed by the QD potential and its associated strain field. The spin interaction with photo-carriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of micro-eV, but vanishingly small for electrons.Comment: 5 pages, 3 figure

    Magnetic Properties of Epitaxial and Polycrystalline Fe/Si Multilayers

    Full text link
    Fe/Si multilayers with antiferromagnetic interlayer coupling have been grown via ion-beam sputtering on both glass and single-crystal substrates. High-angle x-ray diffraction measurements show that both sets of films have narrow Fe peaks, implying a large crystallite size and crystalline iron silicide spacer layers. Low-angle x-ray diffraction measurements show that films grown on glass have rougher interfaces than those grown on single-crystal substrates. The multilayers grown on glass have a larger remanent magnetization than the multilayers grown on single-crystal substrates. The observation of magnetocrystalline anisotropy in hysteresis loops and (hkl)(hkl) peaks in x-ray diffraction demonstrates that the films grown on MgO and Ge are epitaxial. The smaller remanent magnetization in Fe/Si multilayers with better layering suggests that the remanence is not an intrinsic property.Comment: 9 pages, RevTex, 4 figures available by fax. Send email to [email protected] for more info. Submitted to '95 MMM proceeding
    corecore