37 research outputs found

    A clinically relevant method of analyzing continuous change in robotic upper extremity chronic stroke rehabilitation

    No full text
    BACKGROUND: Robots designed for rehabilitation of the upper extremity after stroke facilitate high rates of repetition during practice of movements and record precise kinematic data, providing a method to investigate motor recovery profiles over time.OBJECTIVE: To determine how motor recovery profiles during robotic interventions provide insight into improving clinical gains.METHODS: A convenience sample (n = 22), from a larger randomized control trial, was taken of chronic stroke participants completing 12 sessions of arm therapy. One group received 60 minutes of robotic therapy (Robot only) and the other group received 45 minutes on the robot plus 15 minutes of translation-to-task practice (Robot + TTT). Movement time was assessed using the robot without powered assistance. Analyses (ANOVA, random coefficient modeling [RCM] with 2-term exponential function) were completed to investigate changes across the intervention, between sessions, and within a session.RESULTS: Significant improvement (P < .05) in movement time across the intervention (pre vs post) was similar between the groups but there were group differences for changes between and within sessions (P < .05). The 2-term exponential function revealed a fast and slow component of learning that described performance across consecutive blocks. The RCM identified individuals who were above or below the marginal model.CONCLUSIONS: The expanded analyses indicated that changes across time can occur in different ways but achieve similar goals and may be influenced by individual factors such as initial movement time. These findings will guide decisions regarding treatment planning based on rates of motor relearning during upper extremity stroke robotic interventions

    Therapeutic Robotics: A Technology Push

    No full text

    Digital Skating Board with RFID Technique for Upper Extremity Rehabilitation

    No full text

    Movement-generated afference paired with transcranial magnetic stimulation: An associative stimulation paradigm

    Get PDF
    Background A peripheral nerve stimulus can enhance or suppress the evoked response to transcranial magnetic stimulation (TMS) depending on the latency of the preceding peripheral nerve stimulation (PNS) pulse. Similarly, somatosensory afference from the passively moving limb can transiently alter corticomotor excitability, in a phase-dependent manner. The repeated association of PNS with TMS is known to modulate corticomotor excitability; however, it is unknown whether repeated passive-movement associative stimulation (MAS) has similar effects. Methods In a proof-of-principle study, using a cross-over design, seven healthy subjects received in separate sessions: (1) TMS (120% of the resting motor threshold-RMT, optimal site for Flexor Carpi Radialis) with muscle at rest; (2) TMS paired with cyclic passive movement during extension cyclic passive movement (400 pairs, 1 Hz), with the intervention order randomly assigned. Normality was tested using the Kolmogorov-Smirnov test, then compared to pre-intervention baseline using repeated measures ANOVA with a Dunnet multiple comparisons test. Results MAS led to a progressive and significant decrease in the motor evoked potential (MEP) amplitude over the intervention (R2 = 0.6665, P < 0.0001), which was not evident with TMS alone (R2 = 0.0068, P = 0.641). Post-intervention excitability reduction, only present with MAS intervention, remained for 20min (0-10min = 68.2 ± 4.9%, P < 0.05; 10-20min = 73.3 ± 9.7%, P < 0.05). Conclusion The association of somatosensory afference from the moving limb with TMS over primary motor cortex in healthy subjects can be used to modulate corticomotor excitability, and may have therapeutic implications

    Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation

    No full text
    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot’s pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least 9 training sessions for 3 neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood
    corecore