5 research outputs found
Genetic and Chemical Evaluation of Trypanosoma brucei Oleate Desaturase as a Candidate Drug Target
Background: Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. Methodology: Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. Principal Findings: Growth of PCF T. brucei was totally inhibited by 100 mM of 12-TS and 13-TS, with EC50 values of 4062 and 3062 mM, respectively. The BSF was more sensitive, with EC50 values of 763 and 261 mM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itsel
Three Mitochondrial DNA Polymerases Are Essential for Kinetoplast DNA Replication and Survival of Bloodstream Form Trypanosoma brucei â–¿ â€
Trypanosoma brucei, the causative agent of human African trypanosomiasis, has a complex life cycle that includes multiple life cycle stages and metabolic changes as the parasite switches between insect vector and mammalian host. The parasite's single mitochondrion contains a unique catenated mitochondrial DNA network called kinetoplast DNA (kDNA) that is composed of minicircles and maxicircles. Long-standing uncertainty about the requirement of kDNA in bloodstream form (BF) T. brucei has recently eroded, with reports of posttranscriptional editing and subsequent translation of kDNA-encoded transcripts as essential processes for BF parasites. These studies suggest that kDNA and its faithful replication are indispensable for this life cycle stage. Here we demonstrate that three kDNA replication proteins (mitochondrial DNA polymerases IB, IC, and ID) are required for BF parasite viability. Silencing of each polymerase was lethal, resulting in kDNA loss, persistence of prereplication DNA monomers, and collapse of the mitochondrial membrane potential. These data demonstrate that kDNA replication is indeed crucial for BF T. brucei. The contributions of mitochondrial DNA polymerases IB, IC, and ID to BF parasite viability suggest that these and other kDNA replication proteins warrant further investigation as a new class of targets for the development of antitrypanosomal drugs