3 research outputs found

    High-energy Neutrino Astronomy: The Cosmic Ray Connection

    Full text link
    This is a review of neutrino astronomy anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. Basic elementary-particle physics dictates a universal upper limit on their energy of 5×10195\times10^{19} eV, the so-called Greisen-Kuzmin-Zatsepin cutoff; however, particles in excess of this energy have been observed by all experiments, adding one more puzzle to the cosmic ray mystery. Mystery is fertile ground for progress: we will review the facts as well as the speculations about the sources including gamma ray bursts, blazars and top-down scenarios. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. We also briefly review the ongoing efforts to commission such instrumentation.Comment: 83 pages, 18 figures, submitted to Reports on Progress in Physic

    Astrophysical Origins of Ultrahigh Energy Cosmic Rays

    Full text link
    In the first part of this review we discuss the basic observational features at the end of the cosmic ray energy spectrum. We also present there the main characteristics of each of the experiments involved in the detection of these particles. We then briefly discuss the status of the chemical composition and the distribution of arrival directions of cosmic rays. After that, we examine the energy losses during propagation, introducing the Greisen-Zaptsepin-Kuzmin (GZK) cutoff, and discuss the level of confidence with which each experiment have detected particles beyond the GZK energy limit. In the second part of the review, we discuss astrophysical environments able to accelerate particles up to such high energies, including active galactic nuclei, large scale galactic wind termination shocks, relativistic jets and hot-spots of Fanaroff-Riley radiogalaxies, pulsars, magnetars, quasar remnants, starbursts, colliding galaxies, and gamma ray burst fireballs. In the third part of the review we provide a brief summary of scenarios which try to explain the super-GZK events with the help of new physics beyond the standard model. In the last section, we give an overview on neutrino telescopes and existing limits on the energy spectrum and discuss some of the prospects for a new (multi-particle) astronomy. Finally, we outline how extraterrestrial neutrino fluxes can be used to probe new physics beyond the electroweak scale.Comment: Higher resolution version of Fig. 7 is available at http://www.angelfire.com/id/dtorres/down3.html. Solicited review article prepared for Reports on Progress in Physics, final versio
    corecore