3 research outputs found

    A Nematode Community-Based Integrated Productivity Efficiency (IPE) Model That Identifies Sustainable Soil Health Outcomes: A Case of Compost Application in Carrot Production

    Get PDF
    Percent soil organic matter (SOM), pH and crop yield are among the biophysicochemical process-driven soil health indicators (SHIs). However, identifying sustainable soil health conditions using these SHIs is limited due to the lack of Integrated Productivity Efficiency (IPE) models. We define IPE as a concept that identifies best-to-worst-case soil health outcomes by assessing the effect of agronomic practices on weighted abundance of functional guilds (WAFG) of beneficial soil organisms and SHIs simultaneously. Expressing WAFG of all beneficial nematodes (x-axis) and SHIs (y-axis) as a percent of untreated control and regression of x and y reveals four quadrants describing worst-to-best-case outcomes for soil health and sustainability. We tested the effects of composted cow manure (AC) and plant litter (PC) applied at 135 (1×), 203 (1.5×), and 270 (2×) kg N/ha on WAFG, SOM, pH, and yield in a sandy clay loam field of a processing carrot cultivar over three growing seasons. Untreated control and urea at 1× served as experimental controls. Data that varied by time and were difficult to make sense of were separated into sustainable, unsustainable, or requiring specific modification to be sustainable categories by the IPE model. Within the sustainable category, all AC treatments and 2× rate of PC treatments had the best integrated efficiency outcomes across the SHIs. The IPE model provides a platform where other biophysicochemical process-driven SHIs could be integrated. View Full-Tex

    Effects of integrated application of plant-based compost and urea on soil food web, soil properties, and yield and quality of a processing carrot cultivar

    Get PDF
    Soil nutrient management system characterized by reduced input of inorganic fertilizers integrated with organic amendments is one of the alternatives for reducing deleterious environmental impact of synthetic fertilizers, suppressing soil-borne pests and diseases, and improving soil health and crop yield. A hypothesis of the present study was that lower rates of urea mixed with higher rates of plant compost (PC) would improve nematode community structure, soil food web condition, soil biological, and physiochemical properties, and yield and quality of a processing carrot (Daucus carota) cultivar. Urea and PC were each applied at 135kg nitrogen (N)/ha alone or at 3:1, 1:1, and 1:3 ratios annually during the 2012 to 2014 growing seasons. A non-amended check served as a control. Nematode community was analyzed from soil samples collected approximately 4-week intervals from planting to 133 days after planting each year. Soil respiration, as a measure of soil biological activity, and soil physiochemical properties were determined from soils collected at planting and at harvest in 2012 and 2013. Results showed that PC alone, and U1:PC1 resulted in soil food web structure significantly above 50 at harvest in 2014. Urea significantly decreased end-ofseason soil pH, but increased NO3-N compared with the other treatments. While the herbivore population density was low, abundances of Tylenchus and Malenchus were negatively correlated with carrot fresh weight of marketable carrot. Overall, results suggest that integrating lower rates of urea and higher rates of PC are likely to increase soil biological activity, soil pH, and phosphorus content
    corecore