6,407 research outputs found
A Critique of Drexler Dark Matter
Drexler dark matter is an alternate approach to dark matter that assumes that
highly relativistic protons trapped in the halo of the galaxies could account
for the missing mass. We look at various energetics involved in such a scenario
such as the energy required to produce such particles and the corresponding
lifetimes. Also we look at the energy losses from synchrotron and inverse
Compton scattering and their signatures. The Coulomb repulsive instability due
to the excess charge around the galaxies is also calculated. The above results
lead us to conclude that such a model for DM is unfeasible.Comment: 4 pages, 10 equation
Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations
Energetic electrons are a common feature of interplanetary shocks and
planetary bow shocks, and they are invoked as a key component of models of
nonthermal radio emission, such as solar radio bursts. A simulation study is
carried out of electron acceleration for high Mach number, quasi-perpendicular
shocks, typical of the shocks in the solar wind. Two dimensional
self-consistent hybrid shock simulations provide the electric and magnetic
fields in which test particle electrons are followed. A range of different
shock types, shock normal angles, and injection energies are studied. When the
Mach number is low, or the simulation configuration suppresses fluctuations
along the magnetic field direction, the results agree with theory assuming
magnetic moment conserving reflection (or Fast Fermi acceleration), with
electron energy gains of a factor only 2 - 3. For high Mach number, with a
realistic simulation configuration, the shock front has a dynamic rippled
character. The corresponding electron energization is radically different:
Energy spectra display: (1) considerably higher maximum energies than Fast
Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate
energies 2 - 5 times the injection energy; (3) power law fall off with
increasing energy, for both upstream and downstream particles, with a slope
decreasing as the shock normal angle approaches perpendicular; (4) sustained
flux levels over a broader region of shock normal angle than for adiabatic
reflection. All these features are in good qualitative agreement with
observations, and show that dynamic structure in the shock surface at ion
scales produces effective scattering and can be responsible for making high
Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure
Quantum Fermion Hair
It is shown that the Dirac operator in the background of a magnetic
%Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable
zero modes in theories containing superconducting cosmic strings. One
consequence of these zero modes is the presence of a fermion condensate around
magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included
Hysteresis phenomenon in deterministic traffic flows
We study phase transitions of a system of particles on the one-dimensional
integer lattice moving with constant acceleration, with a collision law
respecting slower particles. This simple deterministic ``particle-hopping''
traffic flow model being a straightforward generalization to the well known
Nagel-Schreckenberg model covers also a more recent slow-to-start model as a
special case. The model has two distinct ergodic (unmixed) phases with two
critical values. When traffic density is below the lowest critical value, the
steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'')
phase. When the density exceeds the second critical value the model produces
large, persistent, well-defined traffic jams, which correspond to the
``jammed'' (or ``liquid'') phase. Between the two critical values each of these
phases may take place, which can be interpreted as an ``overcooled gas'' phase
when a small perturbation can change drastically gas into liquid. Mathematical
analysis is accomplished in part by the exact derivation of the life-time of
individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the
Journal of Statistical Physic
Strong lensing constraints on the velocity dispersion and density profile of elliptical galaxies
We use the statistics of strong gravitational lensing from the CLASS survey
to impose constraints on the velocity dispersion and density profile of
elliptical galaxies. This approach differs from much recent work, where the
luminosity function, velocity dispersion and density profile were typically
{\it assumed} in order to constrain cosmological parameters. It is indeed
remarkable that observational cosmology has reached the point where we can
consider using cosmology to constrain astrophysics, rather than vice versa. We
use two different observables to obtain our constraints (total optical depth
and angular distributions of lensing events). In spite of the relatively poor
statistics and the uncertain identification of lenses in the survey, we obtain
interesting constraints on the velocity dispersion and density profiles of
elliptical galaxies. For example, assuming the SIS density profile and
marginalizing over other relevant parameters, we find 168 km/s < sigma_* < 200
km/s (68% CL), and 158 km/s < sigma_* < 220 km/s (95% CL). Furthermore, if we
instead assume a generalized NFW density profile and marginalize over other
parameters, the slope of the profile is constrained to be 1.50 < beta < 2.00
(95% CL). We also constrain the concentration parameter as a function of the
density profile slope in these models. These results are essentially
independent of the exact knowledge of cosmology. We briefly discuss the
possible impact on these constraints of allowing the galaxy luminosity function
to evolve with redshift, and also possible useful future directions for
exploration.Comment: Uses the final JVAS/CLASS sample, more careful choice of ellipticals,
added discussion of possible biases. Final results essentially unchanged.
Matches the MNRAS versio
Dirty Black Holes and Hairy Black Holes
An approach based on considerations of the non-classical energy momentum
tensor outside the event horizon of a black hole provides additional physical
insight into the nature of discrete quantum hair on black holes and its effect
on black hole temperature. Our analysis both extends previous work based on the
Euclidean action techniques, and corrects an omission in that work. We also
raise several issues related to the effects of instantons on black hole
thermodynamics and the relation between these effects and results in two
dimensional quantum field theory.Comment: 13 pages, Latex, submitted to Physical Review Letter
Atomic effects in astrophysical nuclear reactions
Two models are presented for the description of the electron screening
effects that appear in laboratory nuclear reactions at astrophysical energies.
The two-electron screening energy of the first model agrees very well with the
recent LUNA experimental result for the break-up reaction , which so far defies all available theoretical models.
Moreover, multi-electron effects that enhance laboratory reactions of the CNO
cycle and other advanced nuclear burning stages, are also studied by means of
the Thomas-Fermi model, deriving analytical formulae that establish a lower and
upper limit for the associated screening energy. The results of the second
model, which show a very satisfactory compatibility with the adiabatic
approximation ones, are expected to be particularly useful in future
experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
Bayesian Analysis of the (Generalized) Chaplygin Gas and Cosmological Constant Models using the 157 gold SNe Ia Data
The generalized Chaplygin gas model (GCGM) contains 5 free parameters, here,
they are constrained through the type Ia supernovae data, i.e., the ``gold
sample'' of 157 supernovae data. Negative and large positive values for
are taken into account. The analysis is made by employing the Bayesian
statistics and the prediction for each parameter is obtained by marginalizing
on the remained ones. This procedure leads to the following predictions:
, , , , , . Through the same
analysis the specific case of the ordinary Chaplygin gas model (CGM), for which
, is studied. In this case, there are now four free parameters and
the predictions for them are: , , , , . To complete the
analysis the CDM, with its three free parameters, is considered. For
all these models, particular cases are considered where one or two parameters
are fixed. The age of the Universe, the deceleration parameter and the moment
the Universe begins to accelerate are also evaluated. The quartessence
scenario, is favoured. A closed (and in some cases a flat) and accelerating
Universe is also preferred. The CGM case is far from been ruled
out, and it is even preferred in some particular cases. In most of the cases
the CDM is disfavoured with respect to GCGM and CGM.Comment: 23 pages, LaTeX 2e, 6 tables, 38 EPS figures, uses graphic
A Critical Analysis of Techniques and Basic Phenomena Related to Deposition of High Temperature Superconducting Thin Films
The processes involved in plasma and ion beam sputter-, electron evaporation-, and laser ablation-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. Research is now demonstrating that the introduction of oxygen into the growing film, simultaneously with the deposition of the film components, is necessary to produce as-deposited superconducting films at relatively low substrate temperatures
Contribution of Long Wavelength Gravitational Waves to the CMB Anisotropy
We present an in depth discussion of the production of gravitational waves
from an inflationary phase that could have occurred in the early universe,
giving derivations for the resulting spectrum and energy density. We also
consider the large-scale anisotropy in the cosmic microwave background
radiation coming from these waves. Assuming that the observed quadrupole
anisotropy comes mostly from gravitational waves (consistent with the
predictions of a flat spectrum of scalar density perturbations and the measured
dipole anisotropy) we describe in detail how to derive a value for the scale of
inflation of GeV, which is at a particularly interesting
scale for particle physics. This upper limit corresponds to a 95\% confidence
level upper limit on the scale of inflation assuming only that the quadrupole
anisotropy from gravitational waves is not cancelled by another source. Direct
detection of gravitational waves produced by inflation near this scale will
have to wait for the next generation of detectors.Comment: (LaTeX 16 pages), 2 figures not included, YCTP-P16-9
- âŠ