10,409 research outputs found

    High-pressure gas facilitates calibration of turbine flowmeters for liquid hydrogen

    Get PDF
    Nitrogen gas at a pressure of 60 atmospheres and ambient temperature facilitates the calibration of turbine flowmeters used for monitoring the flow of liquid hydrogen in cryogenic systems. Full-scale calibration factors can be obtained to an accuracy of 0.4 percent

    V_{us} from hyperon semileptonic decays

    Full text link
    A model-independent determination of the CKM matrix element V_{us} from five measured strangeness-changing hyperon semileptonic decays is performed. Flavor SU(3) symmetry breaking effects in the leading vector and axial-vector form factors are analyzed in the framework of the 1/N_c expansion of QCD. A fit to experimental data allows one to extract the value V_{us}=0.2199\pm 0.0026, which is comparable to the one from K_{e3} decays. This reconciliation is achieved through second-order symmetry breaking effects of a few percent in the form factors f_1, which increase their magnitudes over their SU(3) predictions.Comment: 23 pages, Revtex4, 12 tables, no figure

    A new approach to the pulsed thermocouple for high gas temperature measurements

    Get PDF
    Pulsed thermocouple systems can be used to measure gas temperatures above the melting point of the thermocouple by various techniques of short term of intermittent exposure of the thermocouple operating at lower temperatures. An approach is described which uses a thermocouple cooled by a small jet of inert gas. When a measurement is to be made, the cooling jet is turned off and the thermocouple allowed to heat up to near its melting point, at which time the cooling is reapplied. The final temperature which the thermocouple should have attained is then calculated by extrapolating an exponential curve fit to the data. Temperature measurements can be recorded and displayed in near real time by using modern high-speed computing systems to perform these calculations. Examples of the technique applied to high temperature jet engine combustor development are presented

    Chiral Corrections to the Hyperon Vector Form Factors

    Full text link
    We present the complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in the Heavy Baryon Chiral Perturbation Theory. Because of the Ademollo-Gatto theorem, at this order the results do not depend on unknown low energy constants and allow to test the convergence of the chiral expansion. We complete and correct previous calculations and find that O(p^3) and O(1/M_0) corrections are important. We also study the inclusion of the decuplet degrees of freedom, showing that in this case the perturbative expansion is jeopardized. These results raise doubts on the reliability of the chiral expansion for hyperons.Comment: 20 pages, 4 figures, v2: published versio

    Labels for non-individuals

    Full text link
    Quasi-set theory is a first order theory without identity, which allows us to cope with non-individuals in a sense. A weaker equivalence relation called ``indistinguishability'' is an extension of identity in the sense that if xx is identical to yy then xx and yy are indistinguishable, although the reciprocal is not always valid. The interesting point is that quasi-set theory provides us a useful mathematical background for dealing with collections of indistinguishable elementary quantum particles. In the present paper, however, we show that even in quasi-set theory it is possible to label objects that are considered as non-individuals. We intend to prove that individuality has nothing to do with any labelling process at all, as suggested by some authors. We discuss the physical interpretation of our results.Comment: 11 pages, no figure

    Surface properties of SmB6 from x-ray photoelectron spectroscopy

    Full text link
    We have investigated the properties of cleaved SmB6_6 single crystals by x-ray photoelectron spectroscopy. At low temperatures and freshly cleaved samples a surface core level shift is observed which vanishes when the temperature is increased. A Sm valence between 2.5 - 2.6 is derived from the relative intensities of the Sm2+^{2+} and Sm3+^{3+} multiplets. The B/Sm intensity ratio obtained from the core levels is always larger than the stoichiometric value. Possible reasons for this deviation are discussed. The B 1s1s signal shows an unexpected complexity: an anomalous low energy component appears with increasing temperature and is assigned to the formation of a suboxide at the surface. While several interesting intrinsic and extrinsic properties of the SmB6_6 surface are elucidated in this manuscript no clear indication of a trivial mechanism for the prominent surface conductivity is found

    KMOS view of the Galactic Centre I. Young stars are centrally concentrated

    Get PDF
    The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4 pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also >100 hot early-type stars in the central parsec of the Milky Way. These stars are only 3-8 Myr old. Our knowledge of the number and distribution of early-type stars in the Galactic centre is incomplete. Only a few spectroscopic observations have been made beyond a projected distance of 0.5 pc of the Galactic centre. The distribution and kinematics of early-type stars are essential to understand the formation and growth of the nuclear star cluster. We cover the central >4pc^2 of the Galactic centre using the integral-field spectrograph KMOS. We extracted more than 1,000 spectra from individual stars and identified early-type stars based on their spectra. Our data set contains 114 bright early-type stars: 6 have narrow emission lines, 23 are Wolf-Rayet stars, 9 stars have featureless spectra, and 76 are O/B type stars. Our wide-field spectroscopic data confirm that the distribution of young stars is compact, with 90% of the young stars identified within 0.5 pc of the nucleus. We identify 24 new O/B stars primarily at large radii. We estimate photometric masses of the O/B stars and show that the total mass in the young population is >12,000M_sun. The O/B stars all appear to be bound to the Milky Way nuclear star cluster, while less than 30% belong to the clockwise rotating disk. The central concentration of the early-type stars is a strong argument that they have formed in situ. A large part of the young O/B stars is not on the disk, which either means that the early-type stars did not all form on the same disk or that the disk is dissolving rapidly. [abridged]Comment: 27 pages, 17 figures, matches journal version: Corrected typos, corrected Notes in Table B.

    Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster

    Get PDF
    We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschild's orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH = (3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron}, and a compression of the cluster along the line-of-sight. Our results are in agreement with the direct measurement of the supermassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent with stellar population studies of other galaxies in the mid-infrared. It is possible that we underestimate M_BH and overestimate the cluster's triaxiality due to observational effects. The spatially semi-resolved kinematic data and extinction within the nuclear star cluster bias the observations to the near side of the cluster, and may appear as a compression of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for the Milky Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to recover complex kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA
    • …
    corecore