371 research outputs found

    Unstable solitons on noncommutative tori and D-branes

    Full text link
    We describe a class of exact solutions of super Yang-Mills theory on even-dimensional noncommutative tori. These solutions generalize the solitons on a noncommutative plane introduced in hep-th/0009142 that are conjectured to describe unstable D2p-D0 systems. We show that the spectrum of quadratic fluctuations around our solutions correctly reproduces the string spectrum of the D2p-D0 system in the Seiberg-Witten decoupling limit. In particular the fluctuations correctly reproduce the 0-0 string winding modes. For p=1 and p=2 we match the differences between the soliton energy and the energy of an appropriate SYM BPS state with the binding energies of D2-D0 and D4-D0 systems. We also give an example of a soliton that we conjecture describes branes of intermediate dimension on a torus such as a D2-D4 system on a four-torus.Comment: 22 pages, Latex; v.2: references adde

    The effect of extra dimensions on gravity wave bursts from cosmic string cusps

    Full text link
    We explore the kinematical effect of having extra dimensions on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravity wave burst, taking into account these two factors, and find a potentially significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio

    Adiabatic and Isocurvature Perturbations for Multifield Generalized Einstein Models

    Full text link
    Low energy effective field theories motivated by string theory will likely contain several scalar moduli fields which will be relevant to early Universe cosmology. Some of these fields are expected to couple with non-standard kinetic terms to gravity. In this paper, we study the splitting into adiabatic and isocurvature perturbations for a model with two scalar fields, one of which has a non-standard kinetic term in the Einstein-frame action. Such actions can arise, e.g., in the Pre-Big-Bang and Ekpyrotic scenarios. The presence of a non-standard kinetic term induces a new coupling between adiabatic and isocurvature perturbations which is non-vanishing when the potential for the matter fields is nonzero. This coupling is un-suppressed in the long wavelength limit and thus can lead to an important transfer of power from the entropy to the adiabatic mode on super-Hubble scales. We apply the formalism to the case of a previously found exact solution with an exponential potential and study the resulting mixing of adiabatic and isocurvature fluctuations in this example. We also discuss the possible relevance of the extra coupling in the perturbation equations for the process of generating an adiabatic component of the fluctuations spectrum from isocurvature perturbations without considering a later decay of the isocurvature component.Comment: 11 pages, 3 figures, one equation corrected, typos fixed, conclusions unchange

    Dynamics and perturbations in assisted chaotic inflation

    Get PDF
    On compactification from higher dimensions, a single free massive scalar field gives rise to a set of effective four-dimensional scalar fields, each with a different mass. These can cooperate to drive a period of inflation known as assisted inflation. We analyze the dynamics of the simplest implementation of this idea, paying particular attention to the decoupling of fields from the slow-roll regime as inflation proceeds. Unlike normal models of inflation, the dynamics does not become independent of the initial conditions at late times. In particular, we estimate the density perturbations obtained, which retain a memory of the initial conditions even though a homogeneous, spatially-flat Universe is generated.Comment: 10 pages, revtex, 2 figure

    Generalised Israel Junction Conditions for a Gauss-Bonnet Brane World

    Get PDF
    In spacetimes of dimension greater than four it is natural to consider higher order (in R) corrections to the Einstein equations. In this letter generalized Israel junction conditions for a membrane in such a theory are derived. This is achieved by generalising the Gibbons-Hawking boundary term. The junction conditions are applied to simple brane world models, and are compared to the many contradictory results in the literature.Comment: 4 page

    Brane cosmological perturbations

    Get PDF
    We address the question of cosmological perturbations in the context of brane cosmology, where our Universe is a three-brane where matter is confined, whereas gravity lives in a higher dimensional spacetime. The equations governing the bulk perturbations are computed in the case of a general warped universe. The results are then specialized to the case of a five-dimensional spacetime, scenario which has recently attracted a lot of attention. In this context, we decompose the perturbations into `scalar', `vector' and `tensor' modes, which are familiar in the standard theory of cosmological perturbations. The junction conditions, which relate the metric perturbations to the matter perturbations in the brane, are then computed.Comment: 14 pages, Latex; no figur

    Strings in the Extended BTZ Spacetime

    Get PDF
    We study string theory on the extended spacetime of the BTZ black hole, as described by an orbifold of the SL(2,R) WZW model. The full spacetime has an infinite number of disconnected boundary components, each corresponding to a dual CFT. We discuss the computation of bulk and boundary correlation functions for operators inserted on different components. String theory correlation functions are obtained by analytic continuation from an orbifold of the SL(2,C)/SU(2) coset model. This yields two-point functions for general operators, including those describing strings that wind around the horizon of the black hole.Comment: 35 pages, harvmac, 5 eps figures, uses epsf.tex. (v2): Extended discussion in section 3.1, typo corrections, references adde

    Very Long Time Scales and Black Hole Thermal Equilibrium

    Full text link
    We estimate the very long time behaviour of correlation functions in the presence of eternal black holes. It was pointed out by Maldacena (hep-th 0106112) that their vanishing would lead to a violation of a unitarity-based bound. The value of the bound is obtained from the holographic dual field theory. The correlators indeed vanish in a semiclassical bulk approximation. We trace the origin of their vanishing to the continuum energy spectrum in the presence of event horizons. We elaborate on the two very long time scales involved: one associated with the black hole and the other with a thermal gas in the vacuum background. We find that assigning a role to the thermal gas background, as suggested in the above work, does restore the compliance with a time-averaged unitarity bound. We also find that additional configurations are needed to explain the expected time dependence of the Poincar\'e recurrences and their magnitude. It is suggested that, while a semiclassical black hole does reproduce faithfully ``coarse grained'' properties of the system, additional dynamical features of the horizon may be necessary to resolve a finer grained information-loss problem. In particular, an effectively formed stretched horizon could yield the desired results.Comment: 30 pages, harvmac, 1 eps figur
    corecore