12,770 research outputs found
Local noise can enhance entanglement teleportation
Recently we have considered two-qubit teleportation via mixed states of four
qubits and defined the generalized singlet fraction. For single-qubit
teleportation, Badziag {\em et al.} [Phys. Rev. A {\bf 62}, 012311 (2000)] and
Bandyopadhyay [Phys. Rev. A {\bf 65}, 022302 (2002)] have obtained a family of
entangled two-qubit mixed states whose teleportation fidelity can be enhanced
by subjecting one of the qubits to dissipative interaction with the environment
via an amplitude damping channel. Here, we show that a dissipative interaction
with the local environment via a pair of time-correlated amplitude damping
channels can enhance fidelity of entanglement teleportation for a class of
entangled four-qubit mixed states. Interestingly, we find that this enhancement
corresponds to an enhancement in the quantum discord for some states.Comment: 10 page
N=1 SYM Action and BRST Cohomology
The relation between BRST cohomology and the N=1 supersymmetric Yang-Mills
action in 4 dimensions is discussed. In particular, it is shown that both off
and on shell N=1 SYM actions are related to a lower dimensional field
polynomial by solving the descent equations, which is obtained from the
cohomological analysis of linearized Slavnov-Taylor operator \B, in the
framework of Algebraic Renormalization. Furthermore we show that off and on
shell solutions differ only by a \B- exact term, which is a consequence of
the fact that the cohomology of both cases are same.Comment: 14 Pages, LaTex. Revised version. To be published in MPL
Quantum channel detection
We present a method to detect properties of quantum channels, assuming that
some a priori information about the form of the channel is available. The
method is based on a correspondence with entanglement detection methods for
multipartite density matrices based on witness operators. We first illustrate
the method in the case of entanglement breaking channels and non separable
random unitary channels, and show how it can be implemented experimentally by
means of local measurements. We then study the detection of non separable maps
and show that for pairs of systems of dimension higher than two the detection
operators are not the same as in the random unitary case, highlighting a richer
separability structure of quantum channels with respect to quantum states.
Finally we consider the set of PPT maps, developing a technique to reveal NPT
maps.Comment: 7 pages, 4 figures, published versio
Information-disturbance tradeoff in quantum measurements
We present a simple information-disturbance tradeoff relation valid for any
general measurement apparatus: The disturbance between input and output states
is lower bounded by the information the apparatus provides in distinguishing
these two states.Comment: 4 Pages, 1 Figure. Published version (reference added and minor
changes performed
Deriving AGN properties from radio CP and LP
We report multi-frequency circular polarization measurements for the radio
source 0056-00 taken at the Effelsberg 100-m radiotelescope. The data reduction
is based on a new calibration procedure that allows the contemporary
measurement of the four Stokes parameters with single-dish radiotelescopesComment: 2 pages, Proceeding of "IAU Symposium No.259. Cosmic Magnetic Fields
from planets, to stars and galaxies
Consistent Truncation to Three Dimensional (Super-)gravity
For a general three dimensional theory of (super-)gravity coupled to
arbitrary matter fields with arbitrary set of higher derivative terms in the
effective action, we give an algorithm for consistently truncating the theory
to a theory of pure (super-)gravity with the gravitational sector containing
only Einstein-Hilbert, cosmological constant and Chern-Simons terms. We also
outline the procedure for finding the parameters of the truncated theory. As an
example we consider dimensional reduction on S^2 of the 5-dimensional minimal
supergravity with curvature squared terms and obtain the truncated theory
without any curvature squared terms. This truncated theory reproduces correctly
the exact central charge of the boundary CFT.Comment: LaTeX file, 22 page
Mechanical Mixing in Nonlinear Nanomechanical Resonators
Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are
operated in the nonlinear regime to investigate higher-order mechanical mixing
at radio frequencies, relevant to signal processing and nonlinear dynamics on
nanometer scales. Driven by two neighboring frequencies the resonators generate
rich power spectra exhibiting a multitude of satellite peaks. This nonlinear
response is studied and compared to -order perturbation theory and
nonperturbative numerical calculations.Comment: 5 pages, 7 figure
The High-Order-Multiplicity of Unusually Wide M-dwarf Binaries: Eleven New Triple and Quadruple Systems
M-dwarfs in extremely wide binary systems are very rare, and may thus have
different formation processes from those found as single stars or close
binaries in the field. In this paper we search for close companions to a new
sample of 36 extremely wide M-dwarf binaries, covering a spectral type range of
M1 to M5 and a separation range of 600 - 6500 AU. We discover 10 new triple
systems and one new quadruple system. We carefully account for selection
effects including proper motion, magnitude limits, the detection of close
binaries in the SDSS, and other sample biases. The bias-corrected total
high-order-multiple fraction is 45% (+18%/-16%) and the bias-corrected
incidence of quadruple systems is < 5%, both statistically compatible with that
found for the more common close M-dwarf multiple systems. Almost all the
detected companions have similar masses to their primaries, although two very
low mass companions, including a candidate brown dwarf, are found at relatively
large separations. We find that the close-binary separation distribution is
strongly peaked towards < 30AU separations. There is marginally significant
evidence for a change in high-order M-dwarf multiplicity with binding energy
and total mass. We also find 2-sigma evidence of an unexpected increased
high-order-multiple fraction for the widest targets in our survey, with a
high-order-multiple fraction of 21% (+17%/-7%) for systems with separations up
to 2000AU, compared to 77% (+9%/-22%) for systems with separations > 4000AU.
These results suggest that the very widest M-dwarf binary systems need higher
masses to form or to survive.Comment: 11 pages, 14 figures, accepted for publication in Ap
- …