33 research outputs found
Recommended from our members
A digital flux-locked loop for high temperature SQUID magnetometer and gradiometer systems with field cancellation
The SQUID sensor is typically operated in a null detector mode where an analogue flux-locked-loop, FLL, provides a negative feedback to maintain linear operation. The modulated SQUID signal is amplified, filtered, demodulated, and integrated in the FLL. The resulting analog signal is a measure of the magnetic field and noise at the SQUID and is also fed back to the modulation and feedback (M & F) coil to null the flux at the SQUID to maintain the linear operating point. Thus, the FLL output signal is proportional to the change in magnetic field at the SQUID pickup coil, provided the slew rate and dynamic range of the SQUID and FLL system are not exceeded. The goal of the work is to advance technologies needed for a practical fieldable SQUID biomagnetic sensor. We used HTC SQUIDs to realize the benefits noted above. We also implemented the FLL algorithm on a digital-signal-processor (DSP) to realize a number of benefits including (1) software control of noise filtering and background rejection to enable unshielded use of SQUID sensors, (2) flux quanta countin and resetting SQUID operating point to increase system slew rate and dynamic range, (3) programmable FLL adaptable to numerous specific applications, (4) digital signal output (up to 32-bit precision), and (5) reduced FLL package cost. This paper presents results of external signal rejection for a sensor system using HTC SQUIDs, preamplifier circuit, and DSP FLL designed and built at our laboratory. We also note a companion paper in these proceedings and other references to the use of DSP in SQUID applications
Recommended from our members
Design and preliminary results from a high temperature superconducting SQUID milliscope used for non-destructive evaluation
The authors present the design and preliminary results from a SQUID milliscope. The device was designed for nondestructive evaluation (NDE) as part of the Enhanced Surveillance Program at Los Alamos National Laboratory and uses a high temperature superconducting (HTS) SQUID sensor to map magnetic fields induced in the sample. Eddy currents are induced in the conducting sample by a wire coil designed to produce minimal magnetic field at the SQUID when no sample is present. The features of interest are characterized by anomalies in the induced magnetic field. The goal of the instrument is sensitivity to small features generally buried under several intervening layers ({approximately}1--10 mm) of conducting and/or non-conducting materials and robustness of design (i.e., the ability to operate in a noisy, unshielded environment). The device has primarily focused on specific NDE problems such as the ability to detect buried seams in conducting materials and quantify the width of these seams. The authors present the design of the instrument, and some data to demonstrate its capabilities
Recommended from our members
First results for a novel superconducting imaging-surface sensor array
A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the back side of the superconducting imaging-plane to study the field symmetry for the system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (1) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (2) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (4) compare superconducting materials for the imaging plane. A phantom source field was measured at the sensors as a function of phantom distance from the sensor array to verify the imaging theory. Both the shape and absolute values of the measured and predicted curves agree very well indicating the system is behaving as a gradiometer in accordance with theory. The output from SQUIDs located behind the imaging surface that sense background fields can be used for software or analog background cancellation. Fields arising from sources close to the imaging plane were shielded from the background sensors by more than a factor of 1000. Measurement of the symmetry of sensor sensitivity to uniform fields exactly followed theoretical predictions
Recommended from our members
Development of SQUID microscope for localization and imaging of material defects (NDE)
Dramatic progress was made in FY1997, the first full year of implementing a new technique for detecting and imaging material defects in nuclear weapon components. Design, fabrication, and initial tests of a ``SQUID Microscope`` has been completed utilizing the extraordinary sensitivity of High-Critical-Temperature (HTC) Superconducting QUantum Interference Device (SQUID) technology. SQUIDs, the most sensitive magnetic field detectors known, are used to sense magnetic anomalies caused by the perturbation of an induction field by defects in the material under examination. Time variation of the amplitude (A) and angle ({theta}) of an induction field with unique spatial distribution allows examination of material defects as a function of depth and orientation within the sample. Variation of the frequency of amplitude variation, {Omega}(A), enables depth selection in a given sample. Scanning the sample in physical, A, and {theta} space enables detection and localization of defects to high precision. A few examples of the material defects anticipated for study include cracks, stress fractures, corrosion, separation between layers, and material inclusions. Design and fabrication of a prototype SQUID Microscope has been completed during FY97. Extensive testing of the physical, thermal, precision mechanical, and vacuum performance of the SQUID microscope were performed. First preliminary tests of the integrated system have been performed and initial results were obtained in the first week of September 1997, more than 3 months ahead of schedule
Recommended from our members
Experimental Investigation of High Temperature Superconducting Imaging Surface Magnetometry
The behavior of high temperature superconducting quantum interference devices (SQUIDs) in the presence of high temperature superconducting surfaces has been investigated. When current sources are placed close to a superconducting imaging surface (SIS) an image current is produced due to the Meissner effect. When a SQUID magnetometer is placed near such a surface it will perform in a gradiometric fashion provided the SQUID and source distances to the SIS are much less than the size of the SIS. We present the first ever experimental verification of this effect for a high temperature SIS. Results are presented for two SQUID-SIS configurations, using a 100 mm diameter YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} disc as the SIS. These results indicate that when the current source and sensor coil (SQUID) are close to the SIS, the behavior is that of a first-order gradiometer. The results are compared to analytic solutions as well as the theoretical predictions of a finite element model
Recommended from our members
LTS Gradiometers Based-On Superconducting Imaging Surface Design
Gradiometer-like devices can be built using a superconducting imaging surface design. Such devices behave similarly to conventional wire-wound gradiometers for nearby magnetic sources. A large gradiometer array can be built by placing SQUID magnetometers close to the surface of a large superconducting plane. The most attractive advantage of such a gradiometer array is the ability to change a baseline for all channels simultaneously by mechanically moving the superconducting imaging surface relative to the sensor array. This can easily be accomplished even when the gradiometer array is cold. We built, experimentally tested, and simulated both first- and second-order gradiometer-like devices with adjustable baseline using the superconducting imaging surface design. First-order radial gradiometer sensors were made by placing planar magnetometers parallel to and near the superconducting imaging surface. A second-order electronic gradiometer was realized by subtracting the output from two of the first-order gradiometers described above
Recommended from our members
Two methods for a first order hardware gradiometer using two HTS SQUIDs
Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting (HTS) SQUIDs. Analog gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels achieved are 2000 and 1000 at 20 Hz for the parallel and series methods respectively. The balance level as a function of frequency is also presented. The effect which time delays in the two sets of SQUID electronics have on this balance level is presented and discussed
Recommended from our members
Two Methods for a First Order Hardware Gradiometer Using Two HTS SQUID's
Two different systems for noise cancellation (first order gradiometers) have been developed using two similar high temperature superconducting (HTS) SQUIDs. ''Analog'' gradiometry is accomplished in hardware by either (1) subtracting the signals from the sensor and background SQUIDs at a summing amplifier (parallel technique) or (2) converting the inverted background SQUID signal to a magnetic field at the sensor SQUID (series technique). Balance levels achieved are 2000 and 1000 at 20 Hz for the parallel and series methods respectively. The balance level as a function of frequency is also presented. The effect which time delays in the two sets of SQUID electronics have on this balance level is presented and discussed
Recommended from our members
SQUIDs as Detectors in a New Experiment to Measure the Neutron Electric Dipole Moment
A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10{sup {minus}28} ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large ({approximately}100 cm{sup 2}) pick-up coils to measure the precession frequency of the spin-polarized {sup 3}He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the {sup 3}He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of {approximately}2x10{sup {minus}16} Tm{sup 2} (0.1 F{sub 0}) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of d F{sub SQ}=2x10{sup {minus}6} F{sub 0}/{radical}Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application we designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and we developed a two-SQUID readout system that will reduce SQUID noise in the experiment. We present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. We also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout techniqu