179 research outputs found

    Zeolite-dye micro lasers

    Get PDF
    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO4_4-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-Ό\mum-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.Comment: Accepted for publication in Phys. Rev. Let

    Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155-304

    Get PDF
    Supermassive black holes can launch powerful jets which can be some of the most luminous multi-wavelength sources; decades after their discovery their physics and energetics are still poorly understood. The past decade has seen a dramatic improvement in the quality of available data, but despite this improvement the semi-analytical modelling of jets has advanced slowly: simple one-zone models are still the most commonly employed method of interpreting data, in particular for AGN jets. These models can roughly constrain the properties of jets but they cannot unambiguously couple their emission to the launching regions and internal dynamics, which can be probed with simulations. However, simulations are not easily comparable to observations because they cannot yet self-consistently predict spectra. We present an advanced semi-analytical model which accounts for the dynamics of the whole jet, starting from a simplified parametrization of Relativistic Magnetohydrodynamics in which the magnetic flux is converted into bulk kinetic energy. To benchmark the model we fit six quasisimultaneous, multi-wavelength spectral energy distributions of the BL Lac PKS 2155-304 obtained by the TANAMI program, and we address the degeneracies inherent to such a complex model by employing a state-of-the-art exploration of parameter space, which so far has been mostly neglected in the study of AGN jets. We find that this new approach is much more effective than a single-epoch fit in providing meaningful constraints on model parameters.Comment: Accepted for publication on MNRA

    A 3D modelling approach for fluid progression during process simulation of wet compression moulding - Motivation & approach

    Get PDF
    Wet compression moulding (WCM) provides large-scale production potential for continuous fibre-reinforced structural components due to simultaneous infiltration and draping during moulding (viscous draping). Due to thickness-dominated infiltration of the laminate, comparatively low cavity pressures are sufficient – a considerable economic advantage. Experimental and numerical investigations prove strong mutual dependencies between the physical mechanisms, especially between resin flow and textile forming. Understanding and suitable modelling of these occurring physical mechanisms is crucial for process development and final part design. While existing modelling approaches are suitable for infiltration of preformed fabrics within various liquid moulding technologies, such as CRTM/RTM or VARI, WCM requires a fully coupled simulation approach for resin progression and concurrent stack deformation. Thus, the key challenge is to efficiently link these two aspects in a suitable framework. First, this work demonstrates that a three-dimensional approach for fluid progression during moulding is needed to capture WCM-process boundary conditions. In this regard, a novel test bench is used to investigate the impact of infiltration on the transversal compaction behaviour of a woven fabric. Moreover, the test setup is applied to determine the in-plane permeability values of the same material corresponding to the beforehand applied compaction states. Results are verified by comparison with an existing linear test setup. In the second part, initial steps towards a three dimensional extension of an existing 2D modelling approach are outlined. For this purpose, a macroscopic FE-based three-dimensional formulation of Darcy’s law is utilized within a User-Element in Abaqus/Explicit. Essential mechanisms within the element are presented. Additional control volumes (FE/CV) are applied to ensure mass conservation. Eventually, it is demonstrated, that the simulation model can predict the average fluid pressure beneath a punch during pre-infiltrated compaction experiments. Finally, major benefits and forthcoming steps for a fully-coupled 3D modelling approach for WCM are outlined

    Investigating source confusion in PMN J1603−-4904

    Full text link
    PMN J1603−-4904 is a likely member of the rare class of γ\gamma-ray emitting young radio galaxies. Only one other source, PKS 1718−-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ\gamma-rays. PMN J1603−-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi/LAT γ\gamma-ray source has been associated with it in the LAT catalogs. We have obtained Chandra observations of the source in order to consider the possibility of source confusion, due to the relatively large positional uncertainty of Fermi/LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603−-4904 that could be counterparts to the γ\gamma-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi/LAT data, which includes an improved localization analysis of 8 years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603−-4904 is indeed the second confirmed γ\gamma-ray bright young radio galaxy.Comment: 4 pages, 3 figures, accepted for publication in A&

    Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310

    Full text link
    The nearby active galaxy IC 310, located in the outskirts of the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Originally, the nucleus of IC 310 has been classified as a radio galaxy. However, studies of the multi-wavelength emission showed several properties similarly to those found from blazars as well as radio galaxies. In late 2012, we have organized the first contemporaneous multi-wavelength campaign including radio, optical, X-ray and gamma-ray instruments. During this campaign an exceptionally bright flare of IC 310 was detected with the MAGIC telescopes in November 2012 reaching an averaged flux level in the night of up to one Crab above 1 TeV with a hard spectrum over two decades in energy. The intra-night light curve showed a series of strong outbursts with flux-doubling time scales as fast as a few minutes. The fast variability constrains the size of the gamma-ray emission regime to be smaller than 20% of the gravitational radius of its central black hole. This challenges the shock acceleration models, commonly used to explain gamma-ray radiation from active galaxies. Here, we will present more details on the MAGIC data and discuss several possible alternative emission models.Comment: 8 pages, 5 figures, Proceedings of the 34th International Cosmic Ray Conference, 30 July - 6 August, 2015, The Hague, The Netherland

    Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310

    Full text link
    IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole, challenging the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. Here we will show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.Comment: 2014 Fermi Symposium proceedings - eConf C14102.

    Cross‐scale seismic anisotropy analysis in metamorphic rocks from the COSC‐1 borehole in the Scandinavian Caledonides

    Get PDF
    Metamorphic and deformed rocks in thrust zones show particularly high seismic anisotropy causing challenges for seismic imaging and interpretation. A good example is the Seve Nappe Complex in central Sweden, an old exhumed orogenic thrust zone that is characterized by a strong but incoherent seismic reflectivity and considerable seismic anisotropy. However, only little is known about their origin in relation to composition and structural influences on measurements at different seismic scales. Here, we present a new integrative study of cross‐scale seismic anisotropy analyses combining mineralogical composition, microstructural analyses and seismic laboratory experiments from the COSC‐1 borehole, which sampled a 2.5 km‐deep section of metamorphic rocks deformed in an orogenic root now preserved in the Lower Seve Nappe. While there is strong crystallographic preferred orientation in most samples in general, variations in anisotropy depend mostly on bulk mineral composition and dominant core lithology as shown by a strong correlation between these. This relationship enables to identify three distinct seismic anisotropy facies providing a continuous anisotropy profile along the borehole. Moreover, comparison of laboratory seismic measurements and electron‐backscatter diffraction data reveals a strong scale‐dependence, which is more pronounced in the highly deformed, heterogeneous samples. This highlights the need for comprehensive cross‐validation of microscale anisotropy analyses with additional lithological data when integrating seismic anisotropy over seismic scales

    Breakdown and recovery in traffic flow models

    Full text link
    Most car-following models show a transition from laminar to ``congested'' flow and vice versa. Deterministic models often have a density range where a disturbance needs a sufficiently large critical amplitude to move the flow from the laminar into the congested phase. In stochastic models, it may be assumed that the size of this amplitude gets translated into a waiting time, i.e.\ until fluctuations sufficiently add up to trigger the transition. A recently introduced model of traffic flow however does not show this behavior: in the density regime where the jam solution co-exists with the high-flow state, the intrinsic stochasticity of the model is not sufficient to cause a transition into the jammed regime, at least not within relevant time scales. In addition, models can be differentiated by the stability of the outflow interface. We demonstrate that this additional criterion is not related to the stability of the flow. The combination of these criteria makes it possible to characterize commonalities and differences between many existing models for traffic in a new way
    • 

    corecore