179 research outputs found
Zeolite-dye micro lasers
We present a new class of micro lasers based on nanoporous molecular sieve
host-guest systems. Organic dye guest molecules of
1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were
inserted into the 0.73-nm-wide channel pores of a zeolite AlPO-5 host. The
zeolitic micro crystal compounds where hydrothermally synthesized according to
a particular host-guest chemical process. The dye molecules are found not only
to be aligned along the host channel axis, but to be oriented as well. Single
mode laser emission at 687 nm was obtained from a whispering gallery mode
oscillating in a 8-m-diameter monolithic micro resonator, in which the
field is confined by total internal reflection at the natural hexagonal
boundaries inside the zeolitic microcrystals.Comment: Accepted for publication in Phys. Rev. Let
Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155-304
Supermassive black holes can launch powerful jets which can be some of the
most luminous multi-wavelength sources; decades after their discovery their
physics and energetics are still poorly understood. The past decade has seen a
dramatic improvement in the quality of available data, but despite this
improvement the semi-analytical modelling of jets has advanced slowly: simple
one-zone models are still the most commonly employed method of interpreting
data, in particular for AGN jets. These models can roughly constrain the
properties of jets but they cannot unambiguously couple their emission to the
launching regions and internal dynamics, which can be probed with simulations.
However, simulations are not easily comparable to observations because they
cannot yet self-consistently predict spectra. We present an advanced
semi-analytical model which accounts for the dynamics of the whole jet,
starting from a simplified parametrization of Relativistic Magnetohydrodynamics
in which the magnetic flux is converted into bulk kinetic energy. To benchmark
the model we fit six quasisimultaneous, multi-wavelength spectral energy
distributions of the BL Lac PKS 2155-304 obtained by the TANAMI program, and we
address the degeneracies inherent to such a complex model by employing a
state-of-the-art exploration of parameter space, which so far has been mostly
neglected in the study of AGN jets. We find that this new approach is much more
effective than a single-epoch fit in providing meaningful constraints on model
parameters.Comment: Accepted for publication on MNRA
A 3D modelling approach for fluid progression during process simulation of wet compression moulding - Motivation & approach
Wet compression moulding (WCM) provides large-scale production potential for continuous fibre-reinforced structural components due to simultaneous infiltration and draping during moulding (viscous draping). Due to thickness-dominated infiltration of the laminate, comparatively low cavity pressures are sufficient â a considerable economic advantage. Experimental and numerical investigations prove strong mutual dependencies between the physical mechanisms, especially between resin flow and textile forming. Understanding and suitable modelling of these occurring physical mechanisms is crucial for process development and final part design. While existing modelling approaches are suitable for infiltration of preformed fabrics within various liquid moulding technologies, such as CRTM/RTM or VARI, WCM requires a fully coupled simulation approach for resin progression and concurrent stack deformation. Thus, the key challenge is to efficiently link these two aspects in a suitable framework. First, this work demonstrates that a three-dimensional approach for fluid progression during moulding is needed to capture WCM-process boundary conditions. In this regard, a novel test bench is used to investigate the impact of infiltration on the transversal compaction behaviour of a woven fabric. Moreover, the test setup is applied to determine the in-plane permeability values of the same material corresponding to the beforehand applied compaction states. Results are verified by comparison with an existing linear test setup.
In the second part, initial steps towards a three dimensional extension of an existing 2D modelling approach are outlined. For this purpose, a macroscopic FE-based three-dimensional formulation of Darcyâs law is utilized within a User-Element in Abaqus/Explicit. Essential mechanisms within the element are presented. Additional control volumes (FE/CV) are applied to ensure mass conservation. Eventually, it is demonstrated, that the simulation model can predict the average fluid pressure beneath a punch during pre-infiltrated compaction experiments. Finally, major benefits and forthcoming steps for a fully-coupled 3D modelling approach for WCM are outlined
Investigating source confusion in PMN J16034904
PMN J16034904 is a likely member of the rare class of -ray
emitting young radio galaxies. Only one other source, PKS 1718649, has been
confirmed so far. These objects, which may transition into larger radio
galaxies, are a stepping stone to understanding AGN evolution. It is not
completely clear how these young galaxies, seen edge-on, can produce
high-energy -rays. PMN J16034904 has been detected by TANAMI Very
Long Baseline Interferometry (VLBI) observations and has been followed-up with
multiwavelength observations. A Fermi/LAT -ray source has been
associated with it in the LAT catalogs. We have obtained Chandra observations
of the source in order to consider the possibility of source confusion, due to
the relatively large positional uncertainty of Fermi/LAT. The goal was to
investigate the possibility of other X-ray bright sources in the vicinity of
PMN J16034904 that could be counterparts to the -ray emission. With
Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi/LAT
data, which includes an improved localization analysis of 8 years of data. We
further study the X-ray fluxes and spectra. We conclude that PMN J16034904
is indeed the second confirmed -ray bright young radio galaxy.Comment: 4 pages, 3 figures, accepted for publication in A&
Black Hole Lightning from the Peculiar Gamma-Ray Loud Active Galactic Nucleus IC 310
The nearby active galaxy IC 310, located in the outskirts of the Perseus
cluster of galaxies is a bright and variable multi-wavelength emitter from the
radio regime up to very high gamma-ray energies above 100 GeV. Originally, the
nucleus of IC 310 has been classified as a radio galaxy. However, studies of
the multi-wavelength emission showed several properties similarly to those
found from blazars as well as radio galaxies. In late 2012, we have organized
the first contemporaneous multi-wavelength campaign including radio, optical,
X-ray and gamma-ray instruments. During this campaign an exceptionally bright
flare of IC 310 was detected with the MAGIC telescopes in November 2012
reaching an averaged flux level in the night of up to one Crab above 1 TeV with
a hard spectrum over two decades in energy. The intra-night light curve showed
a series of strong outbursts with flux-doubling time scales as fast as a few
minutes. The fast variability constrains the size of the gamma-ray emission
regime to be smaller than 20% of the gravitational radius of its central black
hole. This challenges the shock acceleration models, commonly used to explain
gamma-ray radiation from active galaxies. Here, we will present more details on
the MAGIC data and discuss several possible alternative emission models.Comment: 8 pages, 5 figures, Proceedings of the 34th International Cosmic Ray
Conference, 30 July - 6 August, 2015, The Hague, The Netherland
Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310
IC 310 has recently been identified as a gamma-ray emitter based on
observations at GeV energies with Fermi-LAT and at very high energies (VHE, E >
100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a
radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a
mixture of multiwavelength properties of a radio galaxy and a blazar, possibly
making it a transitional object. On the night of 12/13th of November 2012 the
MAGIC telescopes observed a series of violent outbursts from the direction of
IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum
spreading over 2 orders of magnitude. Such fast variability constrains the size
of the emission region to be smaller than 20% of the gravitational radius of
its central black hole, challenging the shock acceleration models, commonly
used in explanation of gamma-ray radiation from active galaxies. Here we will
show that this emission can be associated with pulsar-like particle
acceleration by the electric field across a magnetospheric gap at the base of
the jet.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
Crossâscale seismic anisotropy analysis in metamorphic rocks from the COSCâ1 borehole in the Scandinavian Caledonides
Metamorphic and deformed rocks in thrust zones show particularly high seismic anisotropy causing challenges for seismic imaging and interpretation. A good example is the Seve Nappe Complex in central Sweden, an old exhumed orogenic thrust zone that is characterized by a strong but incoherent seismic reflectivity and considerable seismic anisotropy. However, only little is known about their origin in relation to composition and structural influences on measurements at different seismic scales. Here, we present a new integrative study of crossâscale seismic anisotropy analyses combining mineralogical composition, microstructural analyses and seismic laboratory experiments from the COSCâ1 borehole, which sampled a 2.5 kmâdeep section of metamorphic rocks deformed in an orogenic root now preserved in the Lower Seve Nappe. While there is strong crystallographic preferred orientation in most samples in general, variations in anisotropy depend mostly on bulk mineral composition and dominant core lithology as shown by a strong correlation between these. This relationship enables to identify three distinct seismic anisotropy facies providing a continuous anisotropy profile along the borehole. Moreover, comparison of laboratory seismic measurements and electronâbackscatter diffraction data reveals a strong scaleâdependence, which is more pronounced in the highly deformed, heterogeneous samples. This highlights the need for comprehensive crossâvalidation of microscale anisotropy analyses with additional lithological data when integrating seismic anisotropy over seismic scales
Breakdown and recovery in traffic flow models
Most car-following models show a transition from laminar to ``congested''
flow and vice versa. Deterministic models often have a density range where a
disturbance needs a sufficiently large critical amplitude to move the flow from
the laminar into the congested phase. In stochastic models, it may be assumed
that the size of this amplitude gets translated into a waiting time, i.e.\
until fluctuations sufficiently add up to trigger the transition. A recently
introduced model of traffic flow however does not show this behavior: in the
density regime where the jam solution co-exists with the high-flow state, the
intrinsic stochasticity of the model is not sufficient to cause a transition
into the jammed regime, at least not within relevant time scales. In addition,
models can be differentiated by the stability of the outflow interface. We
demonstrate that this additional criterion is not related to the stability of
the flow. The combination of these criteria makes it possible to characterize
commonalities and differences between many existing models for traffic in a new
way
- âŠ