170 research outputs found

    Associations between left ventricular structure and function with cardiorespiratory fitness and body composition in individuals with cervical and upper thoracic spinal cord injury

    Get PDF
    STUDY DESIGN: Cross-sectional. OBJECTIVE: It is known that left ventricular mass (LVM) and cardiorespiratory fitness (CRF) are associated to fat-free mass (FFM).  It is unknown if these factors associated with left ventricular (LV) structure and function outcomes in individuals with spinal cord injury (SCI). SETTING: University-based laboratory.Vancouver, BC, Canada. METHODS: Thirty-two individuals (aged 40 ± 11 years) with chronic, motor-complete SCI between the fourth cervical and sixth thoracic levels were recruited. Echocardiographic LV parameters and body composition were assessed at rest, as per the recommended guidelines for each technique. CRF was assessed during an incremental arm-cycle exercise test until volitional fatigue. The appropriate bivariate correlation coefficients [i.e., Pearson’s (r) and Spearman’s rank (R(s))] tests were used for normal and non-normal distributed variables, respectively. RESULTS: LV structure and function parameters were not associated with the indexed peak oxygen consumption (V̇O(2peak)) [i.e., relative to body weight or FFM] (R(s) values ranged from −0.168 to 0.134, all P values > 0.223). The association between peak oxygen pulse and the resting echocardiographic-obtained SV was medium sized (R(s) = 0.331, P = 0.069). The LVM associations with FFM and fat mass (FM) were large and small (r = 0.614, P < 0.001 and r = 0.266, P = 0.141, respectively). Associations of absolute V̇O(2peak) were medium- positive with FFM (R(s) = 0.414, P = 0.021) but negative with FM (R(s) = −0.332, P = 0.068). CONCLUSION: LV parameters measured at rest are not associated with V̇O(2peak) in individuals with cervical and upper-thoracic SCI. Given the observed associations between LVM and V̇O(2peak) with FFM, future studies may consider utilizing FFM for indexing cardiovascular measures following SCI

    Effect of epidural spinal cord stimulation on female sexual function after spinal cord injury

    Get PDF
    Sexual dysfunction is a common consequence for women with spinal cord injury (SCI); however, current treatments are ineffective, especially in the under-prioritized population of women with SCI. This case-series, a secondary analysis of the Epidural Stimulation After Neurologic Damage (E-STAND) clinical trial aimed to investigate the effect of epidural spinal cord stimulation (ESCS) on sexual function and distress in women with SCI. Three females, with chronic, thoracic, sensorimotor complete SCI received daily (24 h/day) tonic ESCS for 13 months. Questionnaires, including the Female Sexual Function Index (FSFI) and Female Sexual Distress Scale (FSDS) were collected monthly. There was a 3.2-point (13.2%) mean increase in total FSFI from baseline (24.5 ± 4.1) to post-intervention (27.8 ± 6.6), with a 4.8–50% improvement in the sub-domains of desire, arousal, orgasm and satisfaction. Sexual distress was reduced by 55%, with a mean decrease of 12 points (55.4%) from baseline (21.7 ± 17.2) to post-intervention (9.7 ± 10.8). There was a clinically meaningful change of 14 points in the International Standards for Neurological Classification of Spinal Cord Injury total sensory score from baseline (102 ± 10.5) to post-intervention (116 ± 17.4), without aggravating dyspareunia. ESCS is a promising treatment for sexual dysfunction and distress in women with severe SCI. Developing therapeutic interventions for sexual function is one of the most meaningful recovery targets for people with SCI. Additional large-scale investigations are needed to understand the long-term safety and feasibility of ESCS as a viable therapy for sexual dysfunction.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03026816, NCT03026816

    Exercise and aerobic capacity in individuals with spinal cord injury:A systematic review with meta-analysis and meta-regression

    Get PDF
    BACKGROUND: A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake (V̇O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF.METHODS AND FINDINGS: Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting &gt;2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions &gt;2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (AV̇O2peak) or relative V̇O2peak (RV̇O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in AV̇O2peak [0.16 (0.07, 0.25) L/min], RV̇O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p &lt; 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in AV̇O2peak [0.22 (0.17, 0.26) L/min], RV̇O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p &lt; 0.001) following exercise interventions. There were subgroup differences for RV̇O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for AV̇O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in AV̇O2peak and RV̇O2peak (p &lt; 0.10). GRADE indicated a moderate level of certainty in the estimated effect for RV̇O2peak, but low levels for AV̇O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design.CONCLUSIONS: Our primary meta-analysis confirms that performing exercise &gt;2 weeks results in significant improvements to AV̇O2peak, RV̇O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in RV̇O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving RV̇O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI.REGISTRATION: PROSPERO: CRD42018104342.</p

    Division of Physical Medicine and Rehabilitation (Krassioukov)

    Get PDF
    Objective: To review systematically the evidence for the management of orthostatic hypotension (OH) in patients with spinal cord injuries (SCIs). Data Sources: A key word literature search was conducted of original and review articles as well as practice guidelines using Medline, CINAHL, EMBASE, and PsycInfo, and manual searches of retrieved articles from 1950 to July 2008, to identify literature evaluating the effectiveness of currently used treatments for OH. Study Selection: Included randomized controlled trials (RCTs), prospective cohort studies, case-control studies, prepost studies, and case reports that assessed pharmacologic and nonpharmacologic intervention for the management of OH in patients with SCI. Data Extraction: Two independent reviewers evaluated the quality of each study, using the Physiotherapy Evidence Database score for RCTs and the Downs and Black scale for all other studies. Study results were tabulated and levels of evidence assigned. Data Synthesis: A total of 8 pharmacologic and 21 nonpharmacologic studies were identified that met the criteria. Of these 26 studies (some include both pharmacologic and nonpharmacologic interventions), only 1 pharmacologic RCT was identified (low-quality RCT producing level 2 evidence), in which midodrine was found to be effective in the management of OH after SCI. Functional electrical stimulation was one of the only nonpharmacologic interventions with some evidence (level 2) to support its utility. Conclusions: Although a wide array of physical and pharmacologic measures are recommended for the management of OH in the general population, very few have been evaluated for use in SCI. Further research needs to quantify the efficacy of treatment for OH in subjects with SCI, especially of the many other pharmacologic interventions that have been shown to be effective in non-SCI conditions. Key Words: Hypotension; orthostatic; Rehabilitation; Review [publication type]; Spinal cord injuries. © by the American Congress of Rehabilitation Medicine T HE DEFINITION OF orthostatic hypotension is typically accepted as a decrease in systolic blood pressure of 20mmHg or more, or a reduction in diastolic blood pressure of 10mmHg or more, on changing body position from a supine position to an upright posture, regardless of the presence of symptoms. 1 Numerous studies have documented the presence of OH after SCI. 2-5 OH is more common in tetraplegia than paraplegia, with prevalence rates as high as 82% for tetraplegia versus 50% for those with paraplegia immediately post-SCI. 5 This condition not only is evident in the acute period postinjury but also has persisted in a significant number of persons for many years. 6-8 Standard mobilization during physiotherapy (eg, sitting or standing) is reported to induce blood pressure decreases that are diagnostic of OH in 74% of patients with SCI, and which are accompanied by OH symptoms (like lightheadedness or dizziness) (appendix 1) in 59% of patients with SCI. 5 This in turn may have a negative impact on the ability of subjects with SCI to participate in rehabilitation. Current management approaches for the treatment of OH consist of pharmacologic and nonpharmacologic interventions. The low level of efferent sympathetic nervous activity and the loss of reflex vasoconstriction after SCI are among the major causes of OH. The decrease in arterial blood pressure after a change to an upright position in subjects with SCI appears to be related to excessive pooling of blood in the abdominal viscera and lower extremities. 10 A subsequent reduction in cardiac output and arterial pressure may lead to tachycardia. However, this reflex tachycardia is often insufficient to compensate for the lowered output and pressure. Consequently, the pooling of blood in the lower extremities and the decrease in blood pressure may resul

    Effects of non-invasive spinal cord stimulation on lower urinary tract, bowel, and sexual functions in individuals with chronic motor-complete spinal cord injury:protocol for a pilot clinical trial

    Get PDF
    INTRODUCTION: Electrical spinal cord neuromodulation has emerged as a leading intervention for restoring autonomic functions, such as blood pressure, lower urinary tract (LUT), bowel, and sexual functions, following spinal cord injury (SCI). While a few preliminary studies have shown the potential effect of non-invasive transcutaneous spinal cord stimulation (tSCS) on autonomic recovery following SCI, the optimal stimulation parameters, as well as real-time and long-term functional benefits of tSCS are understudied. This trial entitled “Non-invasive Neuromodulation to Treat Bladder, Bowel, and Sexual Dysfunction following Spinal Cord Injury” is a pilot trial to examine the feasibility, dosage effect and safety of tSCS on pelvic organ function for future large-scale randomized controlled trials. METHODS AND ANALYSIS: Forty eligible participants with chronic cervical or upper thoracic motor-complete SCI will undergo stimulation mapping and assessment batteries to determine the real-time effect of tSCS on autonomic functions. Thereafter, participants will be randomly assigned to either moderate or intensive tSCS groups to test the dosage effect of long-term stimulation on autonomic parameters. Participants in each group will receive 60 minutes of tSCS per session either twice (moderate) or five (intensive) times per week, over a period of six weeks. Outcome measures include: (a) changes in bladder capacity through urodynamic studies during real-time and after long-term tSCS, and (b) resting anorectal pressure determined via anorectal manometry during real-time tSCS. We also measure assessments of sexual function, neurological impairments, and health-related quality of life using validated questionnaires and semi-structured interviews. ETHICS AND DISSEMINATION: Ethical approval has been obtained (CREB H20-01163). All primary and secondary outcome data will be submitted to peer-reviewed journals and disseminated among the broader scientific community and stakeholders
    corecore