349 research outputs found

    Examination of the effects of language and cultural barriers on Spanish-speaking patients in health settings as observed by medical Spanish interpreters

    Get PDF
    This study aimed to investigate how the Spanish language and culture affects treatment, access to healthcare and perceptions of medical visits within the Hispanic population. This was examined through the viewpoint of medical Spanish interpreters in the Harrisonburg community. Quantitative data served to provide descriptive statistics regarding these interpreters, while qualitative data was used to gather data about themes and subthemes that were developed regarding this topic. Language was found to not be a significant barrier, but culture did have a significant affect. It was found that these barriers affected access to care because of lack of information, education levels and insurance. Hispanic patients usually go to medical clinics for emergencies, which was related to lack of information about the medical system in the United States. Interpreters were available for patients to use and easy to access, and it was perceived that interpretation plays an important role in the healthcare of the Hispanic population

    MDCC: Multi-Data Center Consistency

    Get PDF
    Replicating data across multiple data centers not only allows moving the data closer to the user and, thus, reduces latency for applications, but also increases the availability in the event of a data center failure. Therefore, it is not surprising that companies like Google, Yahoo, and Netflix already replicate user data across geographically different regions. However, replication across data centers is expensive. Inter-data center network delays are in the hundreds of milliseconds and vary significantly. Synchronous wide-area replication is therefore considered to be unfeasible with strong consistency and current solutions either settle for asynchronous replication which implies the risk of losing data in the event of failures, restrict consistency to small partitions, or give up consistency entirely. With MDCC (Multi-Data Center Consistency), we describe the first optimistic commit protocol, that does not require a master or partitioning, and is strongly consistent at a cost similar to eventually consistent protocols. MDCC can commit transactions in a single round-trip across data centers in the normal operational case. We further propose a new programming model which empowers the application developer to handle longer and unpredictable latencies caused by inter-data center communication. Our evaluation using the TPC-W benchmark with MDCC deployed across 5 geographically diverse data centers shows that MDCC is able to achieve throughput and latency similar to eventually consistent quorum protocols and that MDCC is able to sustain a data center outage without a significant impact on response times while guaranteeing strong consistency

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201

    MLI: An API for Distributed Machine Learning

    Full text link
    MLI is an Application Programming Interface designed to address the challenges of building Machine Learn- ing algorithms in a distributed setting based on data-centric computing. Its primary goal is to simplify the development of high-performance, scalable, distributed algorithms. Our initial results show that, relative to existing systems, this interface can be used to build distributed implementations of a wide variety of common Machine Learning algorithms with minimal complexity and highly competitive performance and scalability
    • …
    corecore