235 research outputs found

    Fission modes of mercury isotopes

    Full text link
    Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\ast.Comment: 6 pages, 5 figures, to be published in Physical Review

    Spontaneous fission modes and lifetimes of super-heavy elements in the nuclear density functional theory

    Full text link
    Lifetimes of super-heavy (SH) nuclei are primarily governed by alpha decay and spontaneous fission (SF). Here we study the competing decay modes of even-even SH isotopes with 108 <= Z <= 126 and 148 <= N <= 188 using the state-of-the-art self-consistent nuclear density functional theory framework capable of describing the competition between nuclear attraction and electrostatic repulsion. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov approach. Along the path to fission, our calculations allow for the simultaneous breaking of axial and space inversion symmetries; this may result in lowering SF lifetimes by more than seven orders of magnitude in some cases. We predict two competing SF modes: reflection-symmetric and reflection-asymmetric.The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280^{280}Hs, 284^{284}Fl, and 118284^{284}_{118}Uuo that separates the regions of SH nuclei synthesized in "cold fusion" and "hot fusion" reactions. The region of long-lived SH nuclei is expected to be centered on 294^{294}Ds with a total half-life of ?1.5 days.Comment: 6 pages, 4 figure

    Theoretical X-Ray Absorption Debye-Waller Factors

    Full text link
    An approach is presented for theoretical calculations of the Debye-Waller factors in x-ray absorption spectra. These factors are represented in terms of the cumulant expansion up to third order. They account respectively for the net thermal expansion σ(1)(T)\sigma^{(1)}(T), the mean-square relative displacements σ2(T)\sigma^2(T), and the asymmetry of the pair distribution function σ(3)(T)\sigma^{(3)}(T). Similarly, we obtain Debye-Waller factors for x-ray and neutron scattering in terms of the mean-square vibrational amplitudes u2(T)u^2(T). Our method is based on density functional theory calculations of the dynamical matrix, together with an efficient Lanczos algorithm for projected phonon spectra within the quasi-harmonic approximation. Due to anharmonicity in the interatomic forces, the results are highly sensitive to variations in the equilibrium lattice constants, and hence to the choice of exchange-correlation potential. In order to treat this sensitivity, we introduce two prescriptions: one based on the local density approximation, and a second based on a modified generalized gradient approximation. Illustrative results for the leading cumulants are presented for several materials and compared with experiment and with correlated Einstein and Debye models. We also obtain Born-von Karman parameters and corrections due to perpendicular vibrations.Comment: 11 pages, 8 figure

    One-particle exchange in the double folded potential in a semiclassical approximation

    Get PDF
    The one-particle exchange in the double folded model is analyzed. To this aim the Extended Thomas-Fermi approach to the one-body density matrix is used. The nucleon- nucleon force with Yukawa, Gauss and Coulomb-type form factors are considered. The energy dependence of the exchange part of the double folded potential is investigated and a comparison of the present approach with former ones is carried out.Comment: 22 pages, LateX, and 6 PostScript figures, (submitted to J.of Phys.G

    Bulk properties of rotating nuclei and the validity of the liquid drop model at finite angular momenta

    Get PDF
    Out of self-consistent semi-classical calculations performed within the so-called Extended Thomas-Fermi approach for 212 nuclei at all even angular momentum values I ranging between 0 and 80 \hbar and using the Skyrme SkM* effective force, the I-dependence of associated liquid drop model parameters has been studied. The latter have been obtained trough separate fits of the calculated values of the strong interaction as well as direct and exchange Coulomb energies. The theoretical data basis so obtained, has allowed to make a rough quantitative assessment of the variation with I of the usual volume and surface energy parameters up to spin of \sim 30-40 \hbar. As a result of the combined variation of the surface and Coulomb energies, it has been shown that this I-dependence results in a significant enhancement of the fission stability of very heavy nuclei, balancing thus partially the well-known instability due to centrifugal forces.Comment: 27 pages, LaTeX (elsart) with 13 embeded postscript figure

    The Origin of the Wigner Energy

    Get PDF
    Surfaces of experimental masses of even-even and odd-odd nuclei exhibit a sharp slope discontinuity at N=Z. This cusp (Wigner energy), reflecting an additional binding in nuclei with neutrons and protons occupying the same shell model orbitals, is usually attributed to neutron-proton pairing correlations. A method is developed to extract the Wigner term from experimental data. Both empirical arguments and shell-model calculations suggest that the Wigner term can be traced back to the isospin T=0 part of nuclear interaction. Our calculations reveal the rather complex mechanism responsible for the nuclear binding around the N=Z line. In particular, we find that the Wigner term cannot be solely explained in terms of correlations between the neutron-proton J=1, T=0 (deuteron-like) pairs.Comment: 10 RevTeX pages, 3 Postscript figures include

    The T=0 neutron-proton pairing correlations in the superdeformed rotational bands around 60Zn

    Get PDF
    The superdeformed bands in 58Cu, 59Cu, 60Zn, and 61Zn are analyzed within the frameworks of the Skyrme-Hartree-Fock as well as Strutinsky-Woods-Saxon total routhian surface methods with and without the T=1 pairing correlations. It is shown that a consistent description within these standard approaches cannot be achieved. A T=0 neutron-proton pairing configuration mixing of signature-separated bands in 60Zn is suggested as a possible solution to the problem.Comment: 9 ReVTex pages, 10 figures, submitted to Phys. Rev.

    Relations between fusion cross sections and average angular momenta

    Get PDF
    We study the relations between moments of fusion cross sections and averages of angular momentum. The role of the centrifugal barrier and the target deformation in determining the effective barrier radius are clarified. A simple method for extracting average angular momentum from fusion cross sections is demonstrated using numerical examples as well as actual data.Comment: 16 REVTeX pages plus 8 included Postscript figures (uses the epsf macro); submitted to Phys. Rev. C; also available at http://nucth.physics.wisc.edu/preprint

    Light-particle emission from the fissioning nuclei 126Ba, 188Pt and (266,272,278)/110: theoretical predictions and experimental results

    Full text link
    We present a comparison of our model treating fission dynamics in conjunction with light-particle (n, p, alpha) evaporation with the available experimental data for the nuclei 126Ba, 188Pt and three isotopes of the element Z=110. The dynamics of the symmetric fission process is described through the solution of a classical Langevin equation for a single collective variable characterizing the nuclear deformation along the fission path. A microscopic approach is used to evaluate the emission rates for pre-fission light particles. Entrance-channel effects are taken into account by generating an initial spin distribution of the compound nucleus formed by the fusion of two deformed nuclei with different relative orientations
    corecore