85 research outputs found

    Kriokirurgija mišjih tumorjev SA-1 v kombinaciji z obsevanjem

    Get PDF
    Tlle aim of this study zuas to determine antitumor effectiveness of cryosurgery alone and in comhination with radiotherapy. Cryosurgery of subcutaneous fibrosarcoma SA-1 tumors in A/J mice was moderately effective trcatmcnt. Tumor growth delay was 10.3 * 3.8 days after 5 minute treatment with nitrogen filled cryo-prohe. Shorter treatment times induced less, but dose dependent antitumor effect. In combined treat- ment, tumors were either first treated by cryosurgery for 3 minutes and then locally irradiated with 10Gy for 5 minutes, or irradiated first and thereafter treated by cryosurgery.The antitumor effectiveness of com- bined treatrnent was sequence dependentthe irradiation of tumors before cryosurgery resulted in better antitumor effect than the irradiation after cryosurgery. These results indicate that radiosensitization may not be always expected, in spite of some reports demonstrating that cryosurgery may have radiosensitizing effect in vivo, and that some other mechanisms may be involved contributing to radiationdamage when cryosurgery follows irradiation.Namen naše raziskave je bil določiti protitumorsko delovanje kriokirurgije kotsamostojne terapije in v kombinaciji z obsevanjem. Kriokirurgija podkožnih fibrosarkomskih tumorjev SA-1, ki smo jih nasadili v A/J miši, je bila učinkovita terapija. Zaostanek v rasti tumorjev po 5 minutnem zamrzovanju s tekočim dušikom je bil 10.3+- 3.8 dni. Časovno krajše zamrzovanje je bilo manjučinkovito, a odvisno od časa zamrzovanja. Pri kombinirani terapiji smo tumorje najprej zamrzovali 3 minute in jih po 5 minutah obsevali z 10 Gy, oziroma najprej obsevali in jih po 5 minutah zamrzovali. Protitumorsko delovanje je bilo odvisno od vrstnega reda kombinirane terapije, tumorji ki smo jih obsevali pred zamrzovanjem so rastli počasneje, kot tisti, ki smo jih obsevali po zmrzovanju. Kljub temu, da nekatere študije poročajo o povečani občutljivosti celic na obsevanje po kriokirurgiji, so naši rezultati pokazali,da te občutljivosti na sevanje in vivo ne moremo vedno pričakovati, ter da so v protitumorsko delovanje kombinirane terapije verjetno vpleteni tudi drugi mehanizmi, ki prispevajo k poškodbam zaradi obsevanja, če le-temu sledi kriokirurgija

    Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma

    Get PDF
    BACKGROUND: Interleukin-12 (IL-12) based radiosensitization is an effective way of tumor treatment. Local cytokine production, without systemic shedding, might provide clinical benefit in radiation treatment of sarcomas. Therefore, the aim was to stimulate intratumoral IL-12 production by gene electrotransfer of plasmid coding for mouse IL-12 (mIL-12) into the tumors, in order to explore its radiosensitizing effect after single or multiple intratumoral gene electrotransfer. METHODS: Solid SA-1 fibrosarcoma tumors, on the back of A/J mice, were treated intratumorally by mIL-12 gene electrotransfer and 24 h later irradiated with a single dose. Treatment effectiveness was measured by tumor growth delay and local tumor control assay (TCD(50) assay). With respect to therapeutic index, skin reaction in the radiation field was scored. The tumor and serum concentrations of cytokines mIL-12 and mouse interferon γ (mIFNγ) were measured. Besides single, also multiple intratumoral mIL-12 gene electrotransfer before and after tumor irradiation was evaluated. RESULTS: Single intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral but not serum mIL-12 and mIFNγ concentrations, and had good antitumor (7.1% tumor cures) and radiosensitizing effect (21.4% tumor cures). Combined treatment resulted in the radiation dose-modifying factor of 2.16. Multiple mIL-12 gene electrotransfer had an even more pronounced antitumor (50% tumor cures) and radiosensitizing (86.7% tumor cures) effect. CONCLUSIONS: Single or multiple intratumoral mIL-12 gene electrotransfer resulted in increased intratumoral mIL-12 and mIFNγ cytokine level, and may provide an efficient treatment modality for soft tissue sarcoma as single or adjuvant therapy to tumor irradiation

    Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging

    Get PDF
    Purpose: The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures: Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fluorescent protein (GFP) gene. Solid TS/A tumors were induced by subcutaneous injection of fluorescent tumor cells, while leg muscles were transiently transfected with plasmid encoding GFP under the control of the CMV promoter. Cells, tumors, and legs were treated either by DNA methylation inhibitor 5-azacytidine, irradiation, or cisplatin. GFP expression was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging in vivo. Results: Treatment of cells, tumors, and legs with 5-azacytidine (re)activated the CMV promoter. Furthermore, treatment with irradiation or cisplatin resulted in significant upregulation of GFP expression both in vitro and in vivo. Conclusions: Observed alterations in the activity of the CMV promoter limit the usefulness of this widely used promoter as a constitutive promoter. On the other hand, inducibility of CMV promoters can be beneficially used in gene therapy when combined with standard cancer treatment, such as radiotherapy and chemotherapy. © 2010 The Author(s)

    Adjuvant TNF-a therapy to electrochemotherapy with intravenous cisplatin in murine sarcoma exerts synergistic antitumor effectiveness

    Get PDF
    Background. Electrochemotherapy is a tumour ablation modality, based on electroporation of the cell membrane, allowing non-permeant anticancer drugs to enter the cell, thus augmenting their cytotoxicity by orders of magnitude. In preclinical studies, bleomycin and cisplatin proved to be the most suitable for clinical use. Intravenous administration of cisplatin for electrochemotherapy is still not widely accepted in the clinics, presumably due to its lower antitumor effectiveness, but adjuvant therapy by immunomodulatory or vascular-targeting agents could provide a way for its potentiation. Hence, the aim of the present study was to explore the possibility of adjuvant tumour necrosis factor % (TNF-%) therapy to potentiate antitumor effectiveness of electrochemotherapy with intravenous cisplatin administration in murine sarcoma. Materials and methods. In vivo study was designed to evaluate the effect of TNF-% applied before or after the electrochemotherapy and to evaluate the effect of adjuvant TNF-% on electrochemotherapy with different cisplatin doses. Results. A synergistic interaction between TNF-% and electrochemotherapy was observed. Administration of TNF-% before the electrochemotherapy resulted in longer tumour growth delay and increased tumour curability, and was significantly more effective than TNF-% administration after the electrochemotherapy. Tumour analysis revealed increased platinum content in tumours, TNF-% induced blood vessel damage and increased tumour necrosis after combination of TNF-% and electrochemotherapy, indicating an anti-vascular action of TNF-%. In addition, immunomodulatory effect might have contributed to curability rate of the tumours. Conclusion. Adjuvant intratumoural TNF-% therapy synergistically contributes to electrochemotherapy with intravenous cisplatin administration. Due to its potentiation at all doses of cisplatin, the combined treatment is predicted to be effective also in tumours, where the drug concentration is suboptimal or in bigger tumours, where electrochemotherapy with intravenous cisplatin is not expected to be sufficiently effective

    Elektrokemoterapija pri lokalnem zdravljenju napredovalega melanoma

    Get PDF

    Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice

    Get PDF
    BACKGROUND: Bleomycin is poorly permeant but potent cytotoxic and radiosensitizing drug. The aim of the study was to evaluate whether a physical drug delivery system – electroporation can increase radiosensitising effect of bleomycin in vitro and in vivo. METHODS: LPB sarcoma cells and tumors were treated either with bleomycin, electroporation or ionizing radiation, and combination of these treatments. In vitro, response to different treatments was determined by colony forming assay, while in vivo, treatment effectiveness was determined by local tumor control (TCD(50)). Time dependence of partial oxygen pressure in LPB tumors after application of electric pulses was measured by electron paramagnetic oxyimetry. RESULTS: Electroporation of cells in vitro increased radiosensitising effect of bleomycin for 1.5 times, in vivo radiation response of tumors was enhanced by 1.9 fold compared to response of tumors that were irradiated only. Neither treatment of tumors with bleomycin nor application of electric pulses only, affected radiation response of tumors. Application of electric pulses to the tumors induced profound but transient reduction of tumor oxygenation. Although tumor oxygenation after electroporation partially restored at the time of irradiation, it was still reduced at the level of radiobiologically relevant hypoxia. CONCLUSION: Our study shows that application of electric pulses to cells and tumors increases radiosensitising effect of bleomycin. Furthermore, our results demonstrate that the radiobiologically relevant hypoxia induced by electroporation of tumors did not counteract the pronounced radiosensitising effect of electrochemotherapy with bleomycin

    The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling

    Get PDF
    The aim of this study was to theoretically and experimentally investigate electroporation of mouse tibialis cranialis and to determine the reversible electroporation threshold values needed for parallel and perpendicular orientation of the applied electric field with respect to the muscle fibers. Our study was based on local electric field calculated with three-dimensional realistic numerical models, that we built, and in vivo visualization of electroporated muscle tissue. We established that electroporation of muscle cells in tissue depends on the orientation of the applied electric field; the local electric field threshold values were determined (pulse parameters: 8 × 100 μs, 1 Hz) to be 80 V/cm and 200 V/cm for parallel and perpendicular orientation, respectively. Our results could be useful electric field parameters in the control of skeletal muscle electroporation, which can be used in treatment planning of electroporation based therapies such as gene therapy, genetic vaccination, and electrochemotherapy
    corecore