12 research outputs found

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    STATUS OF THE USE OF LARGE-SCALE CORBA- DISTRIBUTED SOFTWARE FRAMEWORK FOR NIF CONTROLS

    No full text
    The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is based on a scalable software framework that will be distributed over some 750 Computers throughout the NIF. The framework provides templates and services at multiple levels of abstraction for the construction of software applications that communicate via CORBA (Common Object Request Broker Architecture). Object-oriented software design patterns are implemented as templates to be extended by application software. Developers extend the framework base classes to model the numerous physical control points. About 140 thousand software objects, each individually addressable through CORBA, will be active at full scale. Most of the objects have persistent state that is initialized at system start-up and stored in a database. Centralized server programs that implement events, alerts, reservations, message logging, data archive, name services, and process management provide additional framework services. A higher-level model-based, distributed shot automation framework also provides a flexible and scalable scripted framework for automatic sequencing of work-flow for control and monitoring of NIF shots. The ICCS software framework has allowed for efficient construction of a software system that supports a large number of distributed control points representing a complex control application. Status of the use of this framework during first experimental shot campaigns and initial commissioning and build-out of the laser facility is described

    Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums

    No full text
    We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of TRAD=300  eV and a symmetric implosion to a 100  μm diameter hot core
    corecore