107 research outputs found

    Turnover of Benzoxazinoids during the Aerobic Deterioration of Maize Silage (Zea mays).

    Get PDF
    While plant-specialized metabolites can affect mammal health, their fate during the aerobic deterioration of crop silage remains poorly understood. In this study, we investigated the metabolization of benzoxazinoids (BXs) in silages of two maize genotypes (W22 wild type and bx1 mutant line) during aerobic deterioration. In W22 plants, concentrations of the aglucone BXs DIMBOA and HMBOA in silage decreased over time upon air exposure, while concentrations of MBOA and BOA increased. Mutant plants had low levels of BXs, which did not significantly vary over time. Aerobic stability was BX-dependent, as pH and counts of yeasts and molds were higher in W22 compared to that in bx1 silage. The nutrient composition was not affected by BXs. These preliminary results may be used to estimate the amounts of BXs provided to farm animals via silage feeding. However, further research is warranted under different harvest and storage conditions

    The effect of lip closure on palatal growth in patients with unilateral clefts

    Get PDF
    Objectives The objective of this study was to compare maxillary dimensions and growth in newborns with Complete Unilateral Cleft Lip and Palate (UCLP) to healthy newborns before and after cheiloplasty. Additionally, a palatal growth curve is constructed to give more information about the natural growth before surgical intervention. Methods Twenty-eight newborns with complete UCLP were enrolled in this study. Multiple plaster-casts of each child during their first year were collected and grouped in before and after cheiloplasty. A previous developed semi-automatic segmentation tool was used to assess the maxillary dimensions and were compared to a healthy control group. Z-scores were calculated to indicate differences between the two populations and if cheiloplasty had influence on maxillary growth. Furthermore, the prediction model created in a previous study was used to indicate differences between predictions and the outcome in UCLP measurements. The analysis was tested for inter- and intra-observer variability. Results Results show differences in alveolar and palatal shape in UCLP patients in comparison with healthy controls. Prior to cheiloplasty an increased width and alveolar length was observed while the palatal depth was decreased. After cheiloplasty the widths moved towards normal but were still significantly larger

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    Collective Cell Migration Drives Morphogenesis of the Kidney Nephron

    Get PDF
    Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase–positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow–dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis

    Aufbau und Programmierung des JPEG-Bildkompressionsprozessors CL550

    No full text
    Die hier vorgestellte Studienarbeit ist Teil eines Projektes, das unter der Bezeichnung MISTER COOL (Multimedia ISDN-Terminal für Cooperation over long Distances) für die Entwicklung eines multimedialen, dienstintegrierten ISDN-PC steht. Im Rahmen der Studienarbeit sollte der JPEG Bildkompressionsprozessor CL550 auf eine PC-Einsteckkarte hardewaremäßig integriert und vom PC programmiert werden. Der bereits digitalisierte und durch Subsampling verringerte Videodatenstrom sollte mittels JPEG Kompression von 844 kBit/s auf 64 kBit/s reduziert werden
    corecore