1,682 research outputs found

    The effect of colony size on lifespan in social insects

    Get PDF

    Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging

    Full text link
    We propose novel methods for Conditional Value-at-Risk (CVaR) estimation for nonlinear systems under high-dimensional dependent random inputs. We develop a novel DD-GPCE-Kriging surrogate that merges dimensionally decomposed generalized polynomial chaos expansion and Kriging to accurately approximate nonlinear and nonsmooth random outputs. We use DD-GPCE-Kriging (1) for Monte Carlo simulation (MCS) and (2) within multifidelity importance sampling (MFIS). The MCS-based method samples from DD-GPCE-Kriging, which is efficient and accurate for high-dimensional dependent random inputs, yet introduces bias. Thus, we propose an MFIS-based method where DD-GPCE-Kriging determines the biasing density, from which we draw a few high-fidelity samples to provide an unbiased CVaR estimate. To accelerate the biasing density construction, we compute DD-GPCE-Kriging using a cheap-to-evaluate low-fidelity model. Numerical results for mathematical functions show that the MFIS-based method is more accurate than the MCS-based method when the output is nonsmooth. The scalability of the proposed methods and their applicability to complex engineering problems are demonstrated on a two-dimensional composite laminate with 28 (partly dependent) random inputs and a three-dimensional composite T-joint with 20 (partly dependent) random inputs. In the former, the proposed MFIS-based method achieves 104x speedup compared to standard MCS using the high-fidelity model, while accurately estimating CVaR with 1.15% error.Comment: 34 pages, 8 figures, research pape

    Bi-fidelity conditional-value-at-risk estimation by dimensionally decomposed generalized polynomial chaos expansion

    Full text link
    Digital twin models allow us to continuously assess the possible risk of damage and failure of a complex system. Yet high-fidelity digital twin models can be computationally expensive, making quick-turnaround assessment challenging. Towards this goal, this article proposes a novel bi-fidelity method for estimating the conditional value-at-risk (CVaR) for nonlinear systems subject to dependent and high-dimensional inputs. For models that can be evaluated fast, a method that integrates the dimensionally decomposed generalized polynomial chaos expansion (DD-GPCE) approximation with a standard sampling-based CVaR estimation is proposed. For expensive-to-evaluate models, a new bi-fidelity method is proposed that couples the DD-GPCE with a Fourier-polynomial expansions of the mapping between the stochastic low-fidelity and high-fidelity output data to ensure computational efficiency. The method employs a measure-consistent orthonormal polynomial in the random variable of the low-fidelity output to approximate the high-fidelity output. Numerical results for a structural mechanics truss with 36-dimensional (dependent random variable) inputs indicate that the DD-GPCE method provides very accurate CVaR estimates that require much lower computational effort than standard GPCE approximations. A second example considers the realistic problem of estimating the risk of damage to a fiber-reinforced composite laminate. The high-fidelity model is a finite element simulation that is prohibitively expensive for risk analysis, such as CVaR computation. Here, the novel bi-fidelity method can accurately estimate CVaR as it includes low-fidelity models in the estimation procedure and uses only a few high-fidelity model evaluations to significantly increase accuracy.Comment: Added acknowledgmen
    • …
    corecore