3,244 research outputs found

    In situ TEM study of twin boundary migration in sub-micron Be fibers

    Full text link
    Deformation twinning in hexagonal crystals is often considered as a way to palliate the lack of independent slip systems. This mechanism might be either exacerbated or shut down in small-scale crystals whose mechanical behavior can significantly deviate from bulk materials. Here, we show that sub-micron beryllium fibers initially free of dislocation and tensile tested in-situ in a transmission electron microscope (TEM) deform by a {101ˉ2}\{ 10\bar{1}2 \} 101ˉ1\langle 10\bar{1}1 \rangle twin thickening. The propagation speed of the twin boundary seems to be entirely controlled by the nucleation of twinning dislocations directly from the surface. The shear produced is in agreement with the repeated lateral motion of twinning dislocations. We demonstrate that the activation volume (VV) associated with the twin boundary propagation can be retrieved from the measure of the twin boundary speed as the stress decreases as in a classical relaxation mechanical test. The value of V8.3±3.3×1029m3V \approx 8.3 \pm 3.3 \times 10^{-29}m^3 is comparable to the value expected from surface nucleation.Comment: 13 pages, 9 figure

    Dislocation plasticity in thin metal films

    Get PDF
    This article describes the current level of understanding of dislocation plasticity in thin films and small structures in which the film or structure dimension plays an important role. Experimental observations of the deformation behavior of thin films, including mechanical testing as well as electron microscopy studies, will be discussed in light of theoretical models and dislocation simulations. In particular, the potential of applying strain-gradient plasticity theory to thin-film deformation is discussed. Although the results of all studies presented follow a “smaller is stronger” trend, a clear functional dependence has not yet been established

    A three-dimensional electrostatic actuator with a locking mechanism for a new generation of atom chips

    No full text
    A micromachined three-dimensional electrostatic actuator that is optimized for aligning and tuning optical microcavities on atom chips is presented. The design of the 3D actuator is outlined in detail, and its characteristics are verified by analytical calculations and finite element modelling. Furthermore, the fabrication process of the actuation device is described and preliminary fabrication results are shown. The actuation in the chip plane which is used for mirror positioning has a working envelope of 17.5 ?m. The design incorporates a unique locking mechanism which allows the out-of-plane actuation that is used for cavity tuning to be carried out once the in-plane actuation is completed. A maximum translation of 7 ?m can be achieved in the out-of-plane direction

    Detection of a Compact Nuclear Radio Source in the Local Group Elliptical Galaxy M32

    Full text link
    The Local Group compact elliptical galaxy M32 hosts one of the nearest candidate super-massive black holes (SMBHs), which has a previously suggested X-ray counterpart. Based on sensitive observations taken with the {\it Karl G. Jansky} Very Large Array (VLA), we detect for the first time a compact radio source coincident with the nucleus of M32, which exhibits an integrated flux density of \sim47.3±6.147.3\pm6.1 μ\muJy at 6.6 GHz. We discuss several possibilities for the nature of this source, favoring an origin of the long-sought radio emission from the central SMBH, for which we also revisit the X-ray properties based on recently acquired {\sl Chandra} and {\sl XMM-Newton} data. Our VLA observations also discover radio emission from three previously known optical planetary nebulae in the inner region of M32.Comment: 13 pages, 2 figures, accepted by ApJ Letter
    corecore