124 research outputs found

    INDUSTRIAL APPLICATION OF BLOCKCHAIN TECHNOLOGY – ERASING THE WEAKNESSES OF VENDOR MANAGED INVENTORY

    Get PDF
    Technological advancements, such as machine learning or the concept of blockchain, have the potential to reshape entire branches of industry as a disruptive technology, but also offer the possibility to opti-mize existing processes. In this paper, we present a concept for vendor managed inventory relationships based on blockchain technology. Hence, we initially define necessary processes and transactions that highlight a special need for transparency and trust between the participants. We designed and developed a proof of concept that addresses the weaknesses of current VMI solutions by performing certain process steps in the blockchain. Thus, we implement a method based on smart contracts, which can interact with existing systems by using different data interfaces and therefore represents an application of Blockchain 3.0. The present work is intended to explain the concept to the reader and to support researchers for the future development of further industrial applications of the blockchain

    The Use of Cafeteria Trials for the Selection of \u3ci\u3eDesmodium ovalifolium\u3c/i\u3e Genotypes

    Get PDF
    For the selection of tropical legumes which contain anti-nutritive components such as tannins, relative acceptability of genotypes to ruminants is of particular importance, since these plant components may influence selective grazing behaviour and subsequent animal productivity. Plant-animal interactions are not predictable from laboratory analyses. Involving grazing animals through the conduction of relative-acceptability (=cafeteria) trials at early stages of the germplasm selection process might therefore provide a convenient tool to adjust and confirm genotype selection based on laboratory quality analyses data. As part of a multilocational germplasm evaluation project, cafeteria-experiments were conducted at two contrasting environments in Colombia with a core collection of Desmodium ovalifolium, a tropical legume species containing tannins. The objective of these experiments was to assess the usefulness of such acceptability trials in the selection of D. ovalifolium genotypes. Relative acceptability indices for the 18 accessions confirm genotype selection based on a series of laboratory quality analyses during earlier stages of the project and indicate pronounced genotype-environment interactions. Moreover, animal activity profiles confirm the influence of plant-environment-animal interactions and thus the usefulness of cafeteriatrials for germplasm selection projects

    Angiotensin-II-Evoked Ca2+ Entry in Murine Cardiac Fibroblasts Does Not Depend on TRPC Channels

    Get PDF
    TRPC proteins form cation conducting channels regulated by different stimuli and are regulators of the cellular calcium homeostasis. TRPC are expressed in cardiac cells including cardiac fibroblasts (CFs) and have been implicated in the development of pathological cardiac remodeling including fibrosis. Using Ca2+ imaging and several compound TRPC knockout mouse lines we analyzed the involvement of TRPC proteins for the angiotensin II (AngII)-induced changes in Ca2+ homeostasis in CFs isolated from adult mice. Using qPCR we detected transcripts of all Trpc genes in CFs; Trpc1, Trpc3 and Trpc4 being the most abundant ones. We show that the AngII-induced Ca2+ entry but also Ca2+ release from intracellular stores are critically dependent on the density of CFs in culture and are inversely correlated with the expression of the myofibroblast marker α-smooth muscle actin. Our Ca2+ measurements depict that the AngII- and thrombin-induced Ca2+ transients, and the AngII-induced Ca2+ entry and Ca2+ release are not affected in CFs isolated from mice lacking all seven TRPC proteins (TRPC-hepta KO) compared to control cells. However, pre-incubation with GSK7975A (10 µM), which sufficiently inhibits CRAC channels in other cells, abolished AngII-induced Ca2+ entry. Consequently, we conclude the dispensability of the TRPC channels for the acute neurohumoral Ca2+ signaling evoked by AngII in isolated CFs and suggest the contribution of members of the Orai channel family as molecular constituents responsible for this pathophysiologically important Ca2+ entry pathway

    Peptide Fractions Obtained from Rice By- Products by Means of an Environment- Friendly Process Show In Vitro Health-Related Bioactivities

    Get PDF
    Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen

    Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets.

    Get PDF
    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions

    Fluorinated musk fragrances : the CF2 group as a conformational bias influencing the odour of civetone and (R)-muscone

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the European Research Council (ERC). The authors acknowledge the EPSRC National Mass Spectrometry Facility (Swansea). M.Y. thanks the China Scholarship Council for financial support. D.O'H. thanks the Royal Society for a Wolfson Research Merit Award.The difluoromethylene (CF2) group has a strong tendency to adopt corner over edge locations in aliphatic macrocycles. In this study, the CF2 group has been introduced into musk relevant macrocyclic ketones. Nine civetone and five muscone analogues have been prepared by synthesis for structure and odour comparisons. X-ray studies indeed show that the CF2 groups influence ring structure and they give some insight into the preferred ring conformations, triggering a musk odour as determined in a professional perfumery environment. The historical conformational model of Bersuker and co-workers for musk fragrance generally holds, and structures that become distorted from this consensus, by the particular placement of the CF2 groups, lose their musk fragrance and become less pleasant.PostprintPeer reviewe

    Synthesis and Electronic Structure Determination of Uranium(VI) Ligand Radical Complexes

    Get PDF
       Pentagonal bipyramidal uranyl complexes of salen ligands, N,N’-bis(3-tert-butyl-(5R)-salicylidene)-1,2-phenylenediamine, in which R = tBu (1a), OMe (1b), and NMe2 (1c), were prepared and the electronic structure of the one-electron oxidized species [1a-c]+ were investigated in solution. The solid-state structures of 1a and 1b were solved by X-ray crystallography, and in the case of 1b an asymmetric UO22+ unit was found due to an intermolecular hydrogen bonding interaction. Electrochemical investigation of 1a-c by cyclic voltammetry showed that each complex exhibited at least one quasi-reversible redox process assigned to the oxidation of the phenolate moieties to phenoxyl radicals. The trend in redox potentials matches the electron-donating ability of the para-phenolate substituents. The electron paramagnetic resonance spectra of cations [1a-c]+ exhibited gav values of 1.997, 1.999, and 1.995, respectively, reflecting the ligand radical character of the oxidized forms, and in addition, spin-orbit coupling to the uranium centre. Chemical oxidation as monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy afforded the one-electron oxidized species. Weak low energy intra-ligand charge transfer (CT) transitions were observed for [1a-c]+ indicating localization of the ligand radical to form a phenolate / phenoxyl radical species. Further analysis using density functional theory (DFT) calculations predicted a localized phenoxyl radical for [1a-c]+ with a small but significant contribution of the phenylenediamine unit to the spin density. Time-dependent DFT (TD-DFT) calculations provided further insight into the nature of the low energy transitions, predicting both phenolate to phenoxyl intervalence charge transfer (IVCT) and phenylenediamine to phenoxyl CT character. Overall, [1a-c]+ are determined to be relatively localized ligand radical complexes, in which localization is enhanced as the electron donating ability of the para-phenolate substituents is increased (NMe2 > OMe > tBu)
    • …
    corecore