35 research outputs found

    Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to mentalize, i.e. develop a Theory of Mind (ToM), enables us to anticipate and build a model of the thoughts, emotions and intentions of others. It has long been hypothesised that women differ from men in their mentalizing abilities. In the present fMRI study we examined the impact of (1) gender (women vs. men) and (2) game partner (human vs. computer) on ToM associated neural activity in the medial prefrontal cortex. Groups of men (n = 12) and women (n = 12) interacted in an iterated classical prisoner's dilemma forced choice situation with alleged human and computer partners who were outside the scanner.</p> <p>Results</p> <p>Both the conditions of playing against putative human as well as computer partners led to activity increases in mPFC, ACC and rTPJ, constituting the classic ToM network. However, mPFC/ACC activity was more pronounced when participants believed they were playing against the alleged human partner. Differences in the medial frontal lobe activation related to the sex of the participants could be demonstrated for the human partner > computer partner contrast.</p> <p>Conclusion</p> <p>Our data demonstrate differences in medial prefrontal brain activation during a ToM task depending on both the gender of participants and the game partner.</p

    Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels

    No full text
    The zinc hyperaccumulator plant Arabidopsis halleri is able to naturally accumulate 100-fold higher leaf zinc concentrations when compared with non-accumulator species such as the closely related A. lyrata and A. thaliana, without showing toxicity symptoms. A novel member of the cation diffusion facilitator (CDF) protein family, an A. halleri metal tolerance protein 1 (MTP1), and the homologous A. thaliana Zn transporter (ZAT)/AtMTP1 metal-specifically complement the zinc hypersensitivity of a Saccharomyces cerevisiae zrc1 cot1 mutant strain. A fusion of the AhMTP1 protein to green fluorescent protein (GFP) localizes to the vacuolar membrane of A. thaliana protoplasts. When compared with A. lyrata and A. thaliana, the total MTP1 transcript levels are substantially higher in the leaves and upregulated upon exposure to high zinc concentrations in the roots of A. halleri. The high MTP1 transcript levels in A. halleri can be primarily attributed to two genetically unlinked genomic AhMTP1 gene copies. The two corresponding loci co-segregate with zinc tolerance in the back-cross 1 generation of a cross between the zinc-tolerant species A. halleri and the zinc-sensitive species A. lyrata. In contrast, a third MTP1 gene in the genome of A. halleri generates only minor amounts of MTP1 transcripts and does not co-segregate with zinc tolerance. Our data suggests that zinc tolerance in A. halleri involves an expanded copy number of an ancestral MTP1 gene, encoding functional proteins that mediate the detoxification of zinc in the cell vacuole. At the transcript level, MTP1 gene copies of A. halleri are regulated differentially and in response to changes in zinc supply

    The Number of a U3 Repeat Box Acting as an Enhancer in Long Terminal Repeats of Polytropic Replication-Competent Porcine Endogenous Retroviruses Dynamically Fluctuates during Serial Virus Passages in Human Cells

    No full text
    The organization and transcriptional regulation of porcine endogenous retrovirus (PERV) long terminal repeats (LTRs) are unknown. We have studied the activity of LTRs from replication-competent molecular clones by performing luciferase reporter assays. The LTRs differ in the presence and number of 39-bp repeats located in U3 that confer strong promoter activity in human, simian, canine, feline, and porcine cell lines, whereas for LTRs devoid of the repeats, the promoter strength was significantly reduced. As the activity of a heterologous simian virus 40 promoter and a homologous repeat-deficient LTR was elevated by four 39-bp repeats independently of its orientation and location, the repeat box complies with the definition of an enhancer. During serial virus passaging of molecular PERV clones on human 293 cells, proviral LTRs demonstrated adaptation of transcriptional activity by dynamic changes of the number of 39-bp repeats in the course of up to 12 passaging cycles

    Comparison of Replication-Competent Molecular Clones of Porcine Endogenous Retrovirus Class A and Class B Derived from Pig and Human Cells

    No full text
    Vertically transmitted endogenous retroviruses pose an infectious risk in the course of pig-to-human transplantation of cells, tissues, and organs. Two classes of polytropic type C porcine endogenous retroviruses (PERV) which are infectious for human cells in vitro are known. Recently, we described the cloning and characterization of replication-competent PERV-B sequences from productively infected human cells (F. Czauderna, N. Fischer, K. Boller, R. Kurth, and R. R. Tönjes, J. Virol. 74:4028–4038, 2000). Here, we report the isolation of infectious molecular PERV-A and PERV-B clones from pig cells and compare these proviruses with clones derived from infected human 293 cells. In addition to clone PERV-A(42) derived from 293 cells, four “native” full-length proviral PERV sequences derived from a genomic library of the porcine cell line PK15 were isolated. Three identical class A clones, designated PK15-PERV-A(42), PK15-PERV-A(45), and PK15-PERV-A(58), and one class B clone, PK15-PERV-B(213), were characterized. PK15-PERV-B(213) is highly homologous but distinct from the previously described clone PERV-B(43). PK15-PERV-A(58) demonstrates close homology to PERV-A(42) in env and to PERV-C in long terminal repeat, gag, and pro/pol sequences. All three PERV clones described here were replication competent upon infection of susceptible cell lines. The findings suggest that the pig genome harbors a limited number of infectious PERV-A and -B sequences
    corecore