7 research outputs found

    Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.)

    Get PDF
    Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. This study examines the nutritional quality of mealworm larvae processed by rack oven drying, vacuum drying or freeze drying, respectively. Proximate composition and fatty acid profile were comparable between the dried larvae. In contrast, larvae color impressions and volatile compound profiles were very much dependent on processing procedure. High-temperature rack oven drying caused pronounced darkening with rather low content of volatiles, pointing toward the progress of Maillard reaction. On the other hand, vacuum drying or freeze drying led to enrichment of volatile Maillard reaction and lipid oxidation intermediates, whose actual sensory relevance needs to be clarified in the future. Beyond sensory and visual importance drying intermediates have to be considered with regard to their metal ion chelating ability; in particular for essential trace elements such as Zn2+. This study found comparable total zinc contents for the differently dried mealworm samples. However, dried larvae, in particular after rack oven drying, had only low zinc accessibility, which was between 20% and 40%. Therefore, bioaccessibility rather than total zinc has to be considered when their contribution to meeting the nutritional requirements for zinc in humans and animals is evaluated.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (T. molitor L.) under Different Drying Regimes

    Get PDF
    The yellow mealworm (Tenebrio molitor L., Coleoptera: Tenebrionidae) is an edible insect and due to its ubiquitous occurrence and the frequency of consumption, a promising candidate for the cultivation and production on an industrial scale. Moreover, it is the first insect to be approved by EFSA 2021 following the Novel Food Regulation. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. The focus of the present study was to analyse the chemical composition, antioxidant capacity, volatile compound profile and colouring of mealworm larvae dried in various regimes (freeze-drying, microwave drying, infrared drying, rack-oven drying and high-frequency drying). Proximate composition and fatty acid profile were similar for all dried larvae. Freeze dried larvae were predominantly marked by lipid oxidation with significantly higher peroxide values, secondary/tertiary oxidation products in the headspace GC-MS profiles and lower antioxidant capacity. High-temperature treatment in the rack oven—and to some extent also infrared or microwave drying—led to mealworm larvae darkening and the appearance of volatile Maillard secondary products such as 2-methylpropanoic acid, 2-/3-methylbutanoic acid and alkylpyrazines. High-frequency drying as a new emerging technology in insect processing was the most cost-effective method with energy costs of solely 0.09 Є/kg T. molitor L. leading to final larval material characterized by both lipid oxidation and nonenzymatic Maillard-browning

    Self-Selection of Feeding Substrates by Tenebrio molitor Larvae of Different Ages to Determine Optimal Macronutrient Intake and the Influence on Larval Growth and Protein Content

    No full text
    Nutrient self-selection was used to determine the optimal uptake of macronutrients by the yellow mealworm (Tenebrio molitor) larvae. The selection study consisted of four combinations of eight pelleted substrates from a total choice of 25, available to the larvae in a multiple-choice arena. In order to be able to determine the nutrient requirements as a function of the larvae age, six, eight and tenweekold larvae were used for the experiment. The larvae were free to choose between the different feeds for a period of two weeks. Rearing took place at 27 °C, 75% relative humidity and under dark conditions. The optimal ratios of macronutrients were 67.3 to 71.5% for carbohydrates, 19.9 to 22.8% for proteins and 8.6 to 10.0% for lipids to ensure the best results. Biomass growth, food intake and conversion were positively influenced to a significant extent by carbohydrate intake. The protein content, too, varied according to the macronutrient intake and substrate composition; a higher protein consumption increased the larval protein content. Wheat bran and flour, oat bran and flakes, maize hulls, lupine flour and potato flakes, in particular, were considered suitable substrates for the feeding and rearing of Tenebrio molitor larvae and highlighted that these larvae preferred a grain-based diet

    Near-Infrared Reflectance Spectroscopy for Quantitative Analysis of Fat and Fatty Acid Content in Living <i>Tenebrio molitor</i> Larvae to Detect the Influence of Substrate on Larval Composition

    No full text
    Several studies have shown that mealworms (Tenebrio molitor L.) could provide animals and humans with valuable nutrients. Tenebrio molitor larvae were studied to determine whether their rearing diets affected their fat and fatty acid content and to ascertain if it is possible to detect the changes in the larval fat composition using near-infrared reflectance spectroscopy (NIRS). For this reason, a standard control diet (100% wheat bran) and an experimental diet, consisting of wheat bran and the supplementation of a different substrate (coconut flour, flaxseed flour, pea protein flour, rose hip hulls, grape pomace, or hemp protein flour) were used. The results showed lesser weight gain and slower growth rates for larvae raised on diets with a high fat content. A total of eight fatty acids were identified and quantified, where palmitic, oleic, and linoleic acids were the most prevalent and showed a correlation between larval content and their content in the rearing diets. There was a high content of lauric acid (3.2–4.6%), myristic acid (11.4–12.9%), and α-linolenic acid 8.4–13.0%) in mealworm larvae as a result of the high dietary content of these fatty acids. NIR spectra were also influenced by the fat and fatty acid composition, as larval absorbance values differed greatly. The coefficient of the determination of prediction (R2P) was over 0.97, with an RPD value of 8.3 for the fat content, which indicates the high predictive accuracy of the NIR model. Furthermore, it was possible to develop calibration models with great predictive efficiency (R2P = 0.81–0.95, RPD = 2.6–5.6) for all fatty acids, except palmitoleic and stearic acids which had a low predictive power (R2P < 0.5, RPD < 2.0). The detection of fat and fatty acids using NIRS can help insect producers to quickly and easily analyze the nutritional composition of mealworm larvae during the rearing process

    Analysis of the Composition of Different Instars of <i>Tenebrio molitor</i> Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content

    No full text
    Insects are a sustainable protein source for food and feed. The yellow mealworm (Tenebrio molitor L.) is a promising candidate for industrial insect rearing and was the focus of this study. This research revealed the diversity of Tenebrio molitor larvae in the varying larval instars in terms of the nutritional content. We hypothesized that water and protein are highest in the earlier instar, while fat content is very low but increases with larval development. Consequently, an earlier instar would be a good choice for harvest, since proteins and amino acids content decrease with larval development. Near-infrared reflectance spectroscopy (NIRS) was represented in this research as a tool for predicting the amino and fatty acid composition of mealworm larvae. Samples were scanned with a near-infrared spectrometer using wavelengths from 1100 to 2100 nm. The calibration for the prediction was developed with modified partial least squares (PLS) as the regression method. The coefficient for determining calibration (R2C) and prediction (R2P) were >0.82 and >0.86, with RPD values of >2.20 for 10 amino acids, resulting in a high prediction accuracy. The PLS models for glutamic acid, leucine, lysine and valine have to be improved. The prediction of six fatty acids was also possible with the coefficient of the determination of calibration (R2C) and prediction (R2P) > 0.77 and >0.66 with RPD values > 1.73. Only the prediction accuracy of palmitic acid was very weak, which was probably due to the narrow variation range. NIRS could help insect producers to analyze the nutritional composition of Tenebrio molitor larvae fast and easily in order to improve the larval feeding and composition for industrial mass rearing

    Dietary zinc enrichment reduces the cadmium burden of mealworm beetle (Tenebrio molitor) larvae

    No full text
    The industrial production of Tenebrio molitor L. requires optimized rearing and processing conditions to generate insect biomass with high nutritional value in large quantities. One of the problems arising from processing is a tremendous loss in mineral accessibility, affecting, amongst others, the essential trace element Zn. As a feasible strategy this study investigates Zn-enrichment of mealworms during rearing to meet the nutritional requirements for humans and animals. Following feeding ZnSO 4 -spiked wheat bran substrates late instar mealworm larvae were evaluated for essential micronutrients and human/animal toxic elements. In addition, growth rate and viability were assessed to select optimal conditions for future mass-rearing. Zn-feeding dose-dependently raised the total Zn content, yet the Zn larvae /Zn wheat bran ratio decreased inversely related to its concentration, indicating an active Zn homeostasis within the mealworms. The Cu status remained stable, suggesting that, in contrast to mammals, the intestinal Cu absorption in mealworm larvae is not affected by Zn. Zn biofortification led to a moderate Fe and Mn reduction in mealworms, a problem that certainly can be overcome by Fe/Mn co-supplementation during rearing. Most importantly, Zn feeding massively reduced the levels of the human/animal toxicant Cd within the mealworm larvae, a technological novelty of outstanding importance to be implemented in the future production process to ensure the consumer safety of this edible insect species.TU Berlin, Open-Access-Mittel – 202

    Systematic Studies on the Antioxidant Capacity and Volatile Compound Profile of Yellow Mealworm Larvae (<i>T. molitor</i> L.) under Different Drying Regimes

    No full text
    The yellow mealworm (Tenebrio molitor L., Coleoptera: Tenebrionidae) is an edible insect and due to its ubiquitous occurrence and the frequency of consumption, a promising candidate for the cultivation and production on an industrial scale. Moreover, it is the first insect to be approved by EFSA 2021 following the Novel Food Regulation. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. The focus of the present study was to analyse the chemical composition, antioxidant capacity, volatile compound profile and colouring of mealworm larvae dried in various regimes (freeze-drying, microwave drying, infrared drying, rack-oven drying and high-frequency drying). Proximate composition and fatty acid profile were similar for all dried larvae. Freeze dried larvae were predominantly marked by lipid oxidation with significantly higher peroxide values, secondary/tertiary oxidation products in the headspace GC-MS profiles and lower antioxidant capacity. High-temperature treatment in the rack oven—and to some extent also infrared or microwave drying—led to mealworm larvae darkening and the appearance of volatile Maillard secondary products such as 2-methylpropanoic acid, 2-/3-methylbutanoic acid and alkylpyrazines. High-frequency drying as a new emerging technology in insect processing was the most cost-effective method with energy costs of solely 0.09 Є/kg T. molitor L. leading to final larval material characterized by both lipid oxidation and nonenzymatic Maillard-browning
    corecore