540 research outputs found
SDR-Based Readout Electronics for the ECHo Experiment
Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range, and the almost ideally linear detector response, metallic magnetic calorimeters (MMC)s are very well suited for a variety of applications in physics. In particular, the ECHo experiment aims to utilize large-scale MMC-based detector arrays to investigate the mass of the electron neutrino. Reading out such arrays is a challenging task which can be tackled using microwave SQUID multiplexing. Here, the detector signals are transduced into frequency shifts of superconducting microwave resonators, which can be deduced using a high-end software-defined radio (SDR) system. The ECHo SDR system is a custom-made modular electronics, which provides 400 channels equally distributed in a 4 to 8 GHz frequency band. The system consists of a superheterodyne RF frequency converter with two successive mixers, a modular conversion, and an FPGA board. For channelization, a novel heterogeneous approach, utilizing the integrated digital down conversion (DDC) of the ADC, a polyphase channelizer, and another DDC for demodulation, is proposed. This approach has excellent channelization properties while being resource-efficient at the same time. After signal demodulation, on-FPGA flux-ramp demodulation processes the signals before streaming it to the data processing and storage backend
First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)
Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bat
Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory
Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in
Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio
signal of air-showers in coincidence with the non-imaging air-Cherenkov array
Tunka-133. Furthermore, this year additional antennas will go into operation
triggered by the new scintillator array Tunka-Grande measuring the secondary
electrons and muons of air showers. Tunka-Rex is a demonstrator for how
economic an antenna array can be without losing significant performance: we
have decided for simple and robust SALLA antennas, and we share the existing
DAQ running in slave mode with the PMT detectors and the scintillators,
respectively. This means that Tunka-Rex is triggered externally, and does not
need its own infrastructure and DAQ for hybrid measurements. By this, the
performance and the added value of the supplementary radio measurements can be
studied, in particular, the precision for the reconstructed energy and the
shower maximum in the energy range of approximately eV. Here
we show first results on the energy reconstruction indicating that radio
measurements can compete with air-Cherenkov measurements in precision.
Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS
Conference Proceeding
Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex
We reconstructed the energy and the position of the shower maximum of air
showers with energies PeV applying a method using radio
measurements performed with Tunka-Rex. An event-to-event comparison to
air-Cherenkov measurements of the same air showers with the Tunka-133
photomultiplier array confirms that the radio reconstruction works reliably.
The Tunka-Rex reconstruction methods and absolute scales have been tuned on
CoREAS simulations and yield energy and values consistent
with the Tunka-133 measurements. The results of two independent measurement
seasons agree within statistical uncertainties, which gives additional
confidence in the radio reconstruction. The energy precision of Tunka-Rex is
comparable to the Tunka-133 precision of , and exhibits a
uncertainty on the absolute scale dominated by the amplitude calibration of the
antennas. For , this is the first direct experimental
correlation of radio measurements with a different, established method. At the
moment, the resolution of Tunka-Rex is approximately g/cm. This resolution can probably be improved by deploying additional
antennas and by further development of the reconstruction methods, since the
present analysis does not yet reveal any principle limitations.Comment: accepted for publication by JCA
Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex
The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in
the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band
produced during the air-shower development. As shown by Tunka-Rex, a sparse
radio array with about 200 m spacing is able to reconstruct the energy and the
depth of the shower maximum with satisfactory precision using simple methods
based on parameters of the lateral distribution of amplitudes. The LOFAR
experiment has shown that a sophisticated treatment of all individually
measured amplitudes of a dense antenna array can make the precision comparable
with the resolution of existing optical techniques. We develop these ideas
further and present a method based on the treatment of time series of measured
signals, i.e. each antenna station provides several points (trace) instead of a
single one (amplitude or power). We use the measured shower axis and energy as
input for CoREAS simulations: for each measured event we simulate a set of
air-showers with proton, helium, nitrogen and iron as primary particle (each
primary is simulated about ten times to cover fluctuations in the shower
maximum due to the first interaction). Simulated radio pulses are processed
with the Tunka-Rex detector response and convoluted with the measured signals.
A likelihood fit determines how well the simulated event fits to the measured
one. The positions of the shower maxima are defined from the distribution of
chi-square values of these fits. When using this improved method instead of the
standard one, firstly, the shower maximum of more events can be reconstructed,
secondly, the resolution is increased. The performance of the method is
demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore
Tunka-Rex: energy reconstruction with a single antenna station (ARENA 2016)
The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in
Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its
host experiment, the air-Cherenkov array Tunka-133, which provided trigger,
data acquisition, and an independent air-shower reconstruction. It was shown
that the air-shower energy can be reconstructed by Tunka-Rex with a precision
of 15\% for events with signal in at least 3 antennas, using the radio
amplitude at a distance of 120\,m from the shower axis as an energy estimator.
Using the reconstruction from the host experiment Tunka-133 for the air-shower
geometry (shower core and direction), the energy estimator can in principle
already be obtained with measurements from a single antenna, close to the
reference distance. We present a method for event selection and energy
reconstruction, requiring only one antenna, and achieving a precision of about
20\%. This method increases the effective detector area and lowers thresholds
for zenith angle and energy, resulting in three times more events than in the
standard reconstruction
Towards a cosmic-ray mass-composition study at Tunka Radio Extension (ARENA 2016)
The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA
facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex
measures air-showers induced by high-energy cosmic rays, in particular, the
lateral distribution of the radio pulses. The depth of the air-shower maximum,
which statistically depends on the mass of the primary particle, is determined
from the slope of the lateral distribution function (LDF). Using a
model-independent approach, we have studied possible features of the
one-dimensional slope method and tried to find improvements for the
reconstruction of primary mass. To study the systematic uncertainties given by
different primary particles, we have performed simulations using the CONEX and
CoREAS software packages of the recently released CORSIKA v7.5 including the
modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations
have shown that the largest systematic uncertainty in the energy deposit is due
to the unknown primary particle. Finally, we studied the relation between the
polarization and the asymmetry of the LDF.Comment: ARENA proceedings, 4 pages, updated reference
Latest results of the Tunka Radio Extension (ISVHECRI2016)
The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63
antennas at the location of the TAIGA facility (Tunka Advanced Instrument for
cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal.
Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and
moonless winter nights and by the scintillator array Tunka-Grande during the
remaining time. Tunka-Rex measures the radio emission from the same air-showers
as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV.
During the first stages of its operation, Tunka-Rex has proven, that sparse
radio arrays can measure air-showers with an energy resolution of better than
15\% and the depth of the shower maximum with a resolution of better than 40
g/cm\textsuperscript{2}. To improve and interpret our measurements as well as
to study systematic uncertainties due to interaction models, we perform radio
simulations with CORSIKA and CoREAS. In this overview we present the setup of
Tunka-Rex, discuss the achieved results and the prospects of mass-composition
studies with radio arrays.Comment: proceedings of ISVHECRI2016 conferenc
- …