20 research outputs found

    MiKlip - a National Research Project on Decadal Climate Prediction

    Get PDF
    A German national project coordinates research on improving a global decadal climate prediction system for future operational use. MiKlip, an eight-year German national research project on decadal climate prediction, is organized around a global prediction system comprising the climate model MPI-ESM together with an initialization procedure and a model evaluation system. This paper summarizes the lessons learned from MiKlip so far; some are purely scientific, others concern strategies and structures of research that targets future operational use. Three prediction-system generations have been constructed, characterized by alternative initialization strategies; the later generations show a marked improvement in hindcast skill for surface temperature. Hindcast skill is also identified for multi-year-mean European summer surface temperatures, extra-tropical cyclone tracks, the Quasi-Biennial Oscillation, and ocean carbon uptake, among others. Regionalization maintains or slightly enhances the skill in European surface temperature inherited from the global model and also displays hindcast skill for wind-energy output. A new volcano code package permits rapid modification of the predictions in response to a future eruption. MiKlip has demonstrated the efficacy of subjecting a single global prediction system to a major research effort. The benefits of this strategy include the rapid cycling through the prediction-system generations, the development of a sophisticated evaluation package usable by all MiKlip researchers, and regional applications of the global predictions. Open research questions include the optimal balance between model resolution and ensemble size, the appropriate method for constructing a prediction ensemble, and the decision between full-field and anomaly initialization. Operational use of the MiKlip system is targeted for the end of the current decade, with a recommended generational cycle of two to three years

    Initialization and ensemble generation for decadal climate predictions: A comparison of different methods

    Get PDF
    Five initialization and ensemble generation methods are investigated with respect to their impact on the prediction skill of the German decadal prediction system "Mittelfristige Klimaprognose" (MiKlip). Among the tested methods, three tackle aspects of model‐consistent initialization using the ensemble Kalman filter (EnKF), the filtered anomaly initialization (FAI) and the initialization method by partially coupled spin‐up (MODINI). The remaining two methods alter the ensemble generation: the ensemble dispersion filter (EDF) corrects each ensemble member with the ensemble mean during model integration. And the bred vectors (BV) perturb the climate state using the fastest growing modes. The new methods are compared against the latest MiKlip system in the low‐resolution configuration (Preop‐LR), which uses lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere reanalyses for initialization. Results show that the tested methods provide an added value for the prediction skill as compared to Preop‐LR in that they improve prediction skill over the eastern and central Pacific and different regions in the North Atlantic Ocean. In this respect, the EnKF and FAI show the most distinct improvements over Preop‐LR for surface temperatures and upper ocean heat content, followed by the BV, the EDF and MODINI. However, no single method exists that is superior to the others with respect to all metrics considered. In particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with respect to the basin‐wide long‐term mean and variability, and with respect to the temporal evolution at the 26° N latitude

    BeitrÀge zu drei Fachtagungen des EU-Projekts MICROLIB

    No full text
    Softcover, 283 S.: 19,00 €Softcover, 17x2

    Katastrophenmanagement im Klinikum der Maximalversorgung

    No full text
    corecore