25 research outputs found
Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP : Phosphocholine Cytidylyltransferase
Control and elimination of malaria still represents a major public health challenge. Emerging parasite resistance to current therapies urges development of antimalarials with novel mechanism of action. Phospholipid biosynthesis of the Plasmodium parasite has been validated as promising candidate antimalarial target. The most prevalent de novo pathway for synthesis of phosphatidylcholine is the Kennedy pathway. Its regulatory and often also rate limiting step is catalyzed by CTP:phosphocholine cytidylyltransferase (CCT). The CHO-MT58 cell line expresses a mutant variant of CCT, and displays a thermo-sensitive phenotype. At non-permissive temperature (40 degrees C), the endogenous CCT activity decreases dramatically, blocking membrane synthesis and ultimately leading to apoptosis. In the present study we investigated the impact of the analogous mutation in a catalytic domain construct of Plasmodium falciparum CCT in order to explore the underlying molecular mechanism that explains this phenotype. We used temperature dependent enzyme activity measurements and modeling to investigate the functionality of the mutant enzyme. Furthermore, MS measurements were performed to determine the oligomerization state of the protein, and MD simulations to assess the inter-subunit interactions in the dimer. Our results demonstrate that the R681H mutation does not directly influence enzyme catalytic activity. Instead, it provokes increased heat-sensitivity by destabilizing the CCT dimer. This can possibly explain the significance of the PfCCT pseudoheterodimer organization in ensuring proper enzymatic function. This also provide an explanation for the observed thermo-sensitive phenotype of CHO-MT58 cell line
Combined Docking and Quantum Chemical Study on CYP-mediated Metabolism of Estrogens in Man
Long-term exposure
to estrogens seriously increases the incidence
of various diseases including breast cancer. Experimental studies
indicate that cytochrome P450 (CYP) enzymes catalyze the bioactivation
of estrogens to catechols, which can exert their harmful effects via
various routes. It has been shown that the 4-hydroxylation pathway
of estrogens is the most malign, while 2-hydroxylation is considered
a benign pathway. It is also known experimentally that with increasing
unsaturation of ring B of estrogens the prevalence of the 4-hydroxylation
pathway significantly increases. In this study, we used a combination
of structural analysis, docking, and quantum chemical calculations
at the B3LYP/6-311+G* level to investigate the factors that influence
the regioselectivity of estrogen metabolism in man. We studied the
structure of human estrogen metabolizing enzymes (CYP1A1, CYP1A2,
CYP1B1, and CYP3A4) in complex with estrone using docking and investigated
the susceptibility of estrone, equilin, and equilenin (which only
differ in the unsaturation of ring B) to undergo 2- and 4-hydroxylation
using several models of CYP enzymes (Compound I, methoxy, and phenoxy
radical). We found that even the simplest models could account for
the experimental difference between the 2- and 4- hydroxylation pathways
and thus might be used for fast screening purposes. We also show that
reactivity indices, specifically in this case the radical and nucleophilic
condensed Fukui functions, also correctly predict the likeliness of
estrogen derivatives to undergo 2- or 4-hydroxylation
Synthesis, experimental and theoretical studies on the factors influencing the pKa values of new crown ethers containing a diarylphosphinic acid unit
Abstract Synthesis of acidic new crown ethers containing a diarylphosphinic acid unit has been accomplished. The aromatic rings of the crown ethers were substituted with tert-butyl and nitro groups. Nitro substitution of the crown ethers was investigated. pKa determination of the new proton-ionizable crown ethers has been performed, showing the effect of the substituents of the aromatic rings on the acidity. An anomaly was discovered in the pKa values and an explanation was given based on quantum mechanical calculations and molecular dynamics simulations
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders
Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy
Correction: Molecular Mechanism for the Thermo-Sensitive Phenotype of CHO-MT58 Cell Line Harbouring a Mutant CTP:Phosphocholine Cytidylyltransferase.
[This corrects the article DOI: 10.1371/journal.pone.0129632.]