20 research outputs found

    Respect for Form as Substance in U.S. Taxation of International Trusts

    Get PDF
    ...we might decide that the attribution rule should not be applied so broadly, or so automatically. But how would such a system be devised by regulation? The attribution rule could be applied to trusts in which the discretion of the trustee is very limited and the beneficial interests so clearly ascertainable that the trust is, for all practicable purposes, transparent. That is, however, only a small universe of cases. This leads to the further conclusion that the attribution rule has to be applied based on a facts and circumstances determination of the beneficial interest in each case. Yet that seems the antithesis of an attribution rule, and the factual inquiry would necessarily require a thorough examination of governing trust law and corporate law in almost every case. That process would be difficult enough if it were Delaware law at issue. Applying non-U.S. trust law and non-U.S. corporate law would be much more cumbersome. Assessing the element of tax avoidance motivation in the structure in order to test the bona fide nature of the trustee\u27s role would further add to the burden of the inquiry. The search for a satisfactory system seems fruitless

    Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy.

    Get PDF
    Perilipin 1 is a lipid droplet coat protein predominantly expressed in adipocytes, where it inhibits basal and facilitates stimulated lipolysis. Loss-of-function mutations in the PLIN1 gene were recently reported in patients with a novel subtype of familial partial lipodystrophy, designated as FPLD4. We now report the identification and characterization of a novel heterozygous frameshift mutation affecting the carboxy-terminus (439fs) of perilipin 1 in two unrelated families. The mutation cosegregated with a similar phenotype including partial lipodystrophy, severe insulin resistance and type 2 diabetes, extreme hypertriglyceridemia, and nonalcoholic fatty liver disease in both families. Poor metabolic control despite maximal medical therapy prompted two patients to undergo bariatric surgery, with remarkably beneficial consequences. Functional studies indicated that expression levels of the mutant protein were lower than wild-type protein, and in stably transfected preadipocytes the mutant protein was associated with smaller lipid droplets. Interestingly, unlike the previously reported 398 and 404 frameshift mutants, this variant binds and stabilizes ABHD5 expression but still fails to inhibit basal lipolysis as effectively as wild-type perilipin 1. Collectively, these findings highlight the physiological need for exquisite regulation of neutral lipid storage within adipocyte lipid droplets, as well as the possible metabolic benefits of bariatric surgery in this serious disease.Wellcome TrustThis is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db14-010

    Chemotherapy in conjoint aging-tumor systems: some simple models for addressing coupled aging-cancer dynamics

    Get PDF
    Background In this paper we consider two approaches to examining the complex dynamics of conjoint aging-cancer cellular systems undergoing chemotherapeutic intervention. In particular, we focus on the effect of cells growing conjointly in a culture plate as a precursor to considering the larger multi-dimensional models of such systems. Tumor cell growth is considered from both the logistic and the Gompertzian case, while normal cell growth of fibroblasts (WI-38 human diploid fibroblasts) is considered as logistic only. Results We demonstrate, in a simple approach, how the interdependency of different cell types in a tumor, together with specifications of for treatment, can lead to different evolutionary patterns for normal and tumor cells during a course of therapy. Conclusions These results have significance for understanding appropriate pharmacotherapy for elderly patients who are also undergoing chemotherapy

    The dynamics of human body weight change

    Get PDF
    An imbalance between energy intake and energy expenditure will lead to a change in body weight (mass) and body composition (fat and lean masses). A quantitative understanding of the processes involved, which currently remains lacking, will be useful in determining the etiology and treatment of obesity and other conditions resulting from prolonged energy imbalance. Here, we show that the long-term dynamics of human weight change can be captured by a mathematical model of the macronutrient flux balances and all previous models are special cases of this model. We show that the generic dynamical behavior of body composition for a clamped diet can be divided into two classes. In the first class, the body composition and mass are determined uniquely. In the second class, the body composition can exist at an infinite number of possible states. Surprisingly, perturbations of dietary energy intake or energy expenditure can give identical responses in both model classes and existing data are insufficient to distinguish between these two possibilities. However, this distinction is important for the efficacy of clinical interventions that alter body composition and mass

    Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model

    Get PDF
    In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules
    corecore