218 research outputs found

    Zero-bias anomalies of point contact resistance due to adiabatic electron renormalization of dynamical defects

    Full text link
    We study effect of the adiabatic electron renormalization on the parameters of the dynamical defects in the ballistic metallic point contact. The upper energy states of the ``dressed'' defect are shown to give a smaller contribution to a resistance of the contact than the lower energy ones. This holds both for the "classical" renormalization related to defect coupling with average local electron density and for the "mesoscopic" renormalization caused by the mesoscopic fluctuations of electronic density the dynamical defects are coupled with. In the case of mesoscopic renormalization one may treat the dynamical defect as coupled with Friedel oscillations originated by the other defects, both static and mobile. Such coupling lifts the energy degeneracy of the states of the dynamical defects giving different mesoscopic contribution to resistance, and provides a new model for the fluctuator as for the object originated by the electronic mesoscopic disorder rather than by the structural one. The correlation between the defect energy and the defect contribution to the resistance leads to zero-temperature and zero-bias anomalies of the point contact resistance. A comparison of these anomalies with those predicted by the Two Channel Kondo Model (TCKM) is made. It is shown, that although the proposed model is based on a completely different from TCKM physical background, it leads to a zero-bias anomalies of the point contact resistance, which are qualitatively similar to TCKM predictions.Comment: 6 pages, to be published in Phys. Rev.

    Study of Genotype X Environment Interaction in Alfalfa Forage Yield

    Get PDF
    The response of alfalfa (Medicago sativa L.) forage yield to eight Alberta test sites was studied for the 1990 and 1991 production years. Cluster analysis was used to group locations and cultivars. Analyses of variances indicated genotype x environment (location) interaction for the first cut yield, the total yield and the difference between first and second cut yields. The Brooks, Bow Island (irrigation), Bow Island (dryland) and Provost locations always clustered together indicating that three of these four test sites may be eliminated without sacrificing reliability

    Magnetoresistance of p-GaAs/AlGaAs structures in the vicinity of metal-insulator transition: Effect of superconducting leads

    Full text link
    Experimental and theoretical studies on transport in semiconductor samples with superconducting electrodes are reported. We focus on the samples close to metal-insulator transition. In metallic samples, a peak of negative magnetoresistance at fields lower than critical magnetic field of the leads was observed. This peak is attributed to restoration of a single-particle tunneling emerging with suppression of superconductivity. The experimental results allow us to estimate tunneling transparency of the boundary between superconductor and metal. In contrast, for the insulating samples no such a peak was observed. We explain this behavior as related to properties of transport through the contact between superconductor and hopping conductor. This effect can be used to discriminate between weak localization and strong localization regimes.Comment: 10 pages, 3 fi

    Point contact spectroscopy of hopping transport: effects of a magnetic field

    Full text link
    The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here we study the additional effects due to an external magnetic field. Combined with the measured conductance, the measured magnetoresistance provides detailed information on these states (e.g. their localization length, the energy difference and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures.Comment: 7 pages, 5 figur

    Magnetoresistance in semiconductor structures with hopping conductivity: effects of random potential and generalization for the case of acceptor states

    Full text link
    We reconsider the theory of magnetoresistance in hopping semiconductors. First, we have shown that the random potential of the background impurities affects significantly preexponential factor of the tunneling amplitude which becomes to be a short-range one in contrast to the long-range one for purely Coulomb hopping centers. This factor to some extent suppresses the negative interference magnetoresistance and can lead to its decrease with temperature decrease which is in agreement with earlier experimental observations. We have also extended the theoretical models of positive spin magnetoresistance, in particular, related to a presence of doubly occupied states (corresponding to the upper Hubbard band) to the case of acceptor states in 2D structures. We have shown that this mechanism can dominate over classical wave-shrinkage magnetoresistance at low temperatures. Our results are in semi-quantitative agreement with experimental data.Comment: 19 pages, 3 figure

    Nonlinear absorption of surface acoustic waves by composite fermions

    Full text link
    Absorption of surface acoustic waves by a two-dimensional electron gas in a perpendicular magnetic field is considered. The structure of such system at the filling factor ν\nu close to 1/2 can be understood as a gas of {\em composite fermions}. It is shown that the absorption at ν=1/2\nu =1/2 can be strongly nonlinear, while small deviation form 1/2 will restore the linear absorption. Study of nonlinear absorption allows one to determine the force acting upon the composite fermions from the acoustic wave at turning points of their trajectories.Comment: 7 pages, 1 figure, submitted to Europhysics letter
    corecore