4 research outputs found

    Analysis of the Dynamics of Cardiovascular Health in the Population of Ivano-Frankivsk Region over the Past Seventeen Years

    Get PDF
    The key to increase the level of life expectancy is good health. To study the indicators of cardiovascular health in the population of the Carpathian region, the analysis of the indicators of cardiovascular disease prevalence over the period 1998-2014 was made. The analysis was conducted based on statistical data of the Regional Information-Analytical Center of Medical Statistics and medical records of the Ivano-Frankivsk Regional Clinical Cardiology Dispensary over the period 1998-2014.To identify the population structure in Ivano-Frankivsk region, the analysis of the main demographic indices over the period 1998-2014 was made. The analysis revealed that in 2007, the total population of the Carpathian region was 1,386,000 people while in 2014, it was 1,379,400 people that was 1.05% and 5.76% lower compared to the total population in 1998 (1,463,600 people). Similar tendency was observed across the whole country. During the studied period, the indicators of the overall prevalence of hypertension (all forms) increased by 2.89 times while the indicators of primary disease incidence increased by 1.89 times. The indicator of the overall prevalence of ischemic heart disease among the adult population of Ivano-Frankivsk region during the studied period increased by 2.11 times ranging from 9780.3 to 20629.1 cases per 100,000 population. It should be noted that since 2012 a reduction in the prevalence of angina pectoris from 6545.7 to 6126.2 cases per 100,000 population (by 1.07 times) was observed. The increase in the incidence of acute myocardial infarction from 81 to 108.2 cases per 100,000 population (by 1.34 times) was detected as well. Cardiovascular diseases are known to be the most urgent problem of modern health care system having no geographical, socioeconomic and sexual preferences. They remain to be the major cause of mortality accounting for about 17,300,000 cases per year.Conclusions. Thus, important factors affecting life expectancy of Ivano-Frankivsk region residents include morbidity and mortality due to cardiovascular diseases which have increased recently

    Theoretical Justification of the Dermatoglyphics Use As Basic Identification Method

    Get PDF
    The article analyzes the main literature sources providing a holistic view of the state and issues of studying the issue related to the possibility of using the dermatoglyphic research method for identification purpose; it is about external recognition, behavioral, psychological identification. The main directions of application of the dermatoglyphic method, providing the study of this issue, are highlighted. Problematic issues related to the areas of application of the dermatoglyphic method have been studied and further prospects for its study have been outlined

    Frequency and Spectrum of Chromosomal Aberrations, Acrocentric Chromosome Associations Among Long Livers with Arterial Hypertension and Osteoarthritis Residing in the Carpathian Region

    Get PDF
    The frequency and spectrum of chromosomal aberrations, acrocentric chromosome associations among 264 long livers with arterial hypertension and osteoarthritis residing in the Carpathian region were analyzed. The obtained results were compared between patients with arterial hypertension and osteoarthritis, patients with arterial hypertension only, patients with osteoarthritis only and healthy individuals. The indices of the average frequency of chromosomal aberrations in all long livers was as follows: (2.82±0.27) in long livers with arterial hypertension and osteoarthritis and (2.17±0.47) in healthy individuals. In long livers with arterial hypertension and those with osteoarthritis, the frequency of chromosomal aberrations was 1.38 times higher compared to the control group (healthy long livers). The frequency of chromosomal abnormalities in long livers with arterial hypertension and those with osteoarthritis was (2.93±0.09) and (2.64±0.37), respectively.At the same time, there was observed the individual variability in chromosomal aberration frequency from 0.2 to 5%. In the spectrum of chromosomal aberrations, unstable chromosomal aberrations (dicentrics, rings, fragments) predominated in all long livers. When studying the index of acrocentric chromosome associations there was revealed that the difference in the indices between studied groups was identical to that when studying the frequency of chromosomal aberrations. In long livers with arterial hypertension and osteoarthritis, the index of the average number of acrocentric chromosome associations per cell was 1.07 times higher than that in long livers with arterial hypertension only, 1.32 times higher compared to that in long livers with osteoarthritis only and 1.75 times higher compared to healthy individuals (p<0.05)

    ПЕРСПЕКТИВИ ВИКОРИСТАННЯ ШТУЧНИХ НЕЙРОННИХ МЕРЕЖ У РОЗРІЗІ СУДОВОЇ МЕДИЦИНИ (ОГЛЯД ЛІТЕРАТУРИ)

    Full text link
    It is known that in the work of forensic medicine experts  have to process and evaluate a large amount of information, which may belong to different types of data – the site inspection protocols, photographic materials, macroscopic data obtained during the autopsy of the corpse , the results of laboratory tests, medical records etc. All the received data should be studied, categorized and evaluated according to international standards.Aim of the work. Analysis of possibilities and limitations of application of artificial neural networks in forensic practice.Conclusions. Modern computer technologies of artificial intelligence (artificial neural networks) can help in the handling of forensic medicine data, which, in turn, will reduce to a minimum the probability of mistakes in preparation of expert conclusions. The algorithms used in artificial neural networks, as a result of processing different types of input data, can direct them to the resulting categorized outputs and structure them. The structure of artificial neural networks allows them to be used in the forensic identification of an unknown person, thus eliminating errors that may be made by a specialist and, accordingly, increasing the effectiveness of such examinations.Известно, что судебно-медицинским экспертам в своей работе приходится обрабатывать и давать оценку большому количеству информации, которая может принадлежать к различным типам данных – протоколы осмотра места происшествия, фотоматериалы, макроскопические данные, полученные в ходе вскрытия трупа, результаты лабораторных исследований, записи в медицинских документах и т. д. Все полученные данные следует изучить, систематизировать по категориям и оценить согласно международным стандартам.Цель работы. Анализ возможностей и ограничений применения искусственных нейронных сетей в судебно-медицинской практике.Выводы. Современные компьютерные технологии искусственного интеллекта (искусственные нейронные сети) могут помочь в обработке судебно-медицинских данных, что, в свою очередь, сведет к минимуму вероятность возникновения ошибок при составлении экспертных заключений. Алгоритмы, используемые в искусственных нейронных сетях, в результате обработки разных видов входных данных могут направлять их к результирующим категоризированным выходам и структурировать. Структура искусственных нейронных сетей позволяет использовать их при проведении судебно-медицинской идентификации неизвестного лица, таким образом исключая ошибки, которые могут быть осуществлены специалистом, соответственно повышая результативность таких экспертиз.Відомо, що судово-медичним експертам у своїй роботі доводиться опрацьовувати та давати оцінку великій кількості інформації, що може належати до різних типів даних – протоколи огляду місця події, фотоматеріали, макроскопічні дані, отримані в ході розтину трупа, результати лабораторних досліджень, записи в медичних документах тощо. Усі отримані дані слід вивчити, систематизувати за категоріями й оцінити згідно з міжнародними стандартами.Мета роботи. Аналіз можливостей та обмежень застосування штучних нейронних мереж у судово-медичній практиці.Висновки. Сучасні комп’ютерні технології штучного інтелекту (штучні нейронні мережі) можуть допомогти в опрацюванні судово-медичних даних, що зі свого боку зведе до мінімуму ймовірність виникнення помилок при складанні експертних висновків. Алгоритми, що використовуються в штучних нейронних мережах, у результаті опрацювання різних видів вхідних даних можуть спрямовувати їх до результуючих категоризованих виходів і структурувати. Структура штучних нейронних мереж дозволяє використовувати їх при проведенні судово-медичної ідентифікації невідомої особи, у такий спосіб виключаючи помилки, що можуть бути здійснені фахівцем, відповідно підвищуючи результативність таких експертиз
    corecore