10 research outputs found

    Open letter: There are more than just trees and forests to be conserved and restored

    Get PDF

    Analysis of competition effects in mono- and mixed cultures of Juvenile Beech and Spruce by means of the plant growth simulation model PLATHO.

    No full text
    Inter- and intra-specific competition between plants for external resources is a critical process for plant growth in natural and managed ecosystems. We present a new approach to simulate competition for the resources light, water, and nitrogen between individual plants within a canopy. This approach was incorporated in a process-oriented plant growth simulation model. The concept of modelling competition is based on competition coefficients calculated from the overlap of occupied crown and soil volumes of each plant individual with the occupied volumes of its four nearest neighbours. The model was parameterised with data from a two-year phytotron experiment with juvenile beech and spruce trees growing in mono- and mixed cultures. For testing the model, an independent data set from this experiment and data from a second phytotron experiment with mixed cultures were used. The model was applied to analyse the consequences of start conditions and plant density on plant-plant competition. In both experiments, spruce dominated beech in mixed cultures. Based on model simulations, we postulate a large influence of start conditions and stand density on the outcome of the competition between the species. When both species have similar heights at the time of canopy closure, the model suggests a greater morphological plasticity of beech compared with spruce to be the crucial mechanism for competitiveness in mixed canopies. Similar to the experiment, in the model greater plasticity was a disadvantage for beech leading to it being outcompeted by the more persistent spruce

    Woody-plant ecosystems under climate change and air pollution—response consistencies across zonobiomes?

    No full text
    Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC?AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC?AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forestsmore than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC?AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree?soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC?AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC?AP. Integrated research on C and nutrient cycling, O3?vegetation interactions and water relations must target mechanisms? ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development

    Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions.

    No full text
    The current AOT40 concept for inferring risks in forest trees by ozone (O-3) injury is based on an accumulated external O-3 exposure rather than an internal O-3 dose or uptake rate. AOT40 assumes O-3 concentrations below 40 nl l(-1) and night-time exposure to be negligible. Hence, this concept is rather inconsistent with observed forest conditions. In contrast, the flux concept of cumulative O-3 uptake (CU) into the leaves has the potential of reflecting a physiologically meaningful internal O-3 dose experienced by trees. In this paper, we relate AOT40 to cumulative O-3 uptake into European beech (Fagus sylvatica), Norway spruce (Picea abies), European larch (Larix decidua) and cembran pine (Pinus cembra) trees differing in size, age and site conditions. We demonstrate that the flux concept can be extended to the tree and the stand level, making use of sap flow measurements through tree trunks. Although in both seedlings and adult trees AOT40 may show some linearity in correlations with average CU, the latter varies, at given AOT40, by 25 +/- 11% within and between species. This is because O-3 flux is primarily influenced by stomatal aperture, the latter being affected by climate, canopy position, leaf and tree age while varying between species. In particular, if weighed by detoxification capacity, we suggest, therefore, O-3 uptake related air quality indices to be promoted towards ecologically meaningful standards in forest protection, overcoming the shortcomings of exposure concepts. As O-3 injury results from the balance between O-3 uptake and detoxification in the leaf mesophyll, we conclude the flux concept in combination with measures of biochemical defence to have the capacity for predicting tree response to O-3 stress

    Effects of neighboring woody plants on target trees with emphasis on effects of understorey shrubs on overstorey physiology in forest communities: a mini-review

    No full text
    corecore