18 research outputs found

    Anti-PEG antibodies : Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals

    Get PDF
    Conjugation of polyethylene glycols (PEGs) to proteins or drug delivery nanosystems is a widely accepted method to increase the therapeutic index of complex nano-biopharmaceuticals. Nevertheless, these drugs and agents are often immunogenic, triggering the rise of anti-drug antibodies (ADAs). Among these ADAs, anti-PEG IgG and IgM were shown to account for efficacy loss due to accelerated blood clearance of the drug (ABC phenomenon) and hypersensitivity reactions (HSRs) entailing severe allergic symptoms with occasionally fatal anaphylaxis. In addition to recapitulating the basic information on PEG and its applications, this review expands on the physicochemical factors influencing its immunogenicity, the prevalence, features, mechanism of formation and detection of anti-PEG IgG and IgM and the mechanisms by which these antibodies (Abs) induce ABC and HSRs. In particular, we highlight the in vitro, animal and human data attesting to anti-PEG Ab-induced complement (C) activation as common underlying cause of both adverse effects. A main message is that correct measurement of anti-PEG Abs and individual proneness for C activation might predict the rise of adverse immune reactions to PEGylated drugs and thereby increase their efficacy and safety

    Contribution of CARPA to polystyrene NP effects in pigs

    Get PDF
    Background: It has been proposed that many hypersensitivity reactions to nanopharmaceuticals represent complement (C)-activation-related pseudoallergy (CARPA), and that pigs provide a sensitive animal model to study the phenomenon. However, a recent study suggested that pulmonary hypertension, the pivotal symptom of porcine CARPA, is not mediated by C in cases of polystyrene nanoparticle (PS-NP)-induced reactions. Goals: To characterize PS-NPs and reexamine the contribution of CARPA to their pulmonary reactivity in pigs. Study design: C activation by 200, 500, and 750 nm (diameter) PS-NPs and their opsonization were measured in human and pig sera, respectively, and correlated with hemodynamic effects of the same NPs in pigs in vivo. Methods: Physicochemical characterization of PS-NPs included size, ζ-potential, cryo-transmission electron microscopy, and hydrophobicity analyses. C activation in human serum was measured by ELISA and opsonization of PS-NPs in pig serum by Western blot and flow cytometry. Pulmonary vasoactivity of PS-NPs was quantified in the porcine CARPA model. Results: PS-NPs are monodisperse, highly hydrophobic spheres with strong negative surface charge. In human serum, they caused size-dependent, significant rises in C3a, Bb, and sC5b-9, but not C4d. Exposure to pig serum led within minutes to deposition of C5b-9 and opsonic iC3b on the NPs, and opsonic iC3b fragments (C3dg, C3d) also appeared in serum. PS-NPs caused major hemodynamic changes in pigs, primarily pulmonary hypertension, on the same time scale (minutes) as iC3b fragmentation and opsonization proceeded. There was significant correlation between C activation by different PS-NPs in human serum and pulmonary hypertension in pigs. Conclusion: PS-NPs have extreme surface properties with no relevance to clinically used nanomedicines. They can activate C via the alternative pathway, entailing instantaneous opsonization of NPs in pig serum. Therefore, rather than being solely C-independent reactivity, the mechanism of PS-NP-induced hypersensitivity in pigs may involve C activation. These data are consistent with the “double-hit” concept of nanoparticle-induced hypersensitivity reactions involving both CARPA and C-independent pseudoallergy

    mRNA-LNP COVID-19 Vaccine Lipids Induce Complement Activation and Production of Proinflammatory Cytokines: Mechanisms, Effects of Complement Inhibitors, and Relevance to Adverse Reactions

    Get PDF
    A small fraction of people vaccinated with mRNA-lipid nanoparticle (mRNA-LNP)-based COVID-19 vaccines display acute or subacute inflammatory symptoms whose mechanism has not been clarified to date. To better understand the molecular mechanism of these adverse events (AEs), here, we analyzed in vitro the vaccine-induced induction and interrelations of the following two major inflammatory processes: complement (C) activation and release of proinflammatory cytokines. Incubation of Pfizer-BioNTech's Comirnaty and Moderna's Spikevax with 75% human serum led to significant increases in C5a, sC5b-9, and Bb but not C4d, indicating C activation mainly via the alternative pathway. Control PEGylated liposomes (Doxebo) also induced C activation, but, on a weight basis, it was ~5 times less effective than that of Comirnaty. Viral or synthetic naked mRNAs had no C-activating effects. In peripheral blood mononuclear cell (PBMC) cultures supplemented with 20% autologous serum, besides C activation, Comirnaty induced the secretion of proinflammatory cytokines in the following order: IL-1α < IFN-γ < IL-1β < TNF-α < IL-6 < IL-8. Heat-inactivation of C in serum prevented a rise in IL-1α, IL-1β, and TNF-α, suggesting C-dependence of these cytokines' induction, although the C5 blocker Soliris and C1 inhibitor Berinert, which effectively inhibited C activation in both systems, did not suppress the release of any cytokines. These findings suggest that the inflammatory AEs of mRNA-LNP vaccines are due, at least in part, to stimulation of both arms of the innate immune system, whereupon C activation may be causally involved in the induction of some, but not all, inflammatory cytokines. Thus, the pharmacological attenuation of inflammatory AEs may not be achieved via monotherapy with the tested C inhibitors; efficacy may require combination therapy with different C inhibitors and/or other anti-inflammatory agents

    Infusion Reactions Associated with the Medical Application of Monoclonal Antibodies: The Role of Complement Activation and Possibility of Inhibition by Factor H

    Get PDF
    Human application of monoclonal antibodies (mAbs), enzymes, as well as contrast media and many other particulate drugs and agents referred to as “nanomedicines”, can initiate pseudoallergic hypersensitivity reactions, also known as infusion reactions. These may in part be mediated by the activation of the complement system, a major humoral defense system of innate immunity. In this review, we provide a brief outline of complement activation-related pseudoallergy (CARPA) in general, and then focus on the reactions caused by mAb therapy. Because the alternative pathway of complement activation may amplify such adverse reactions, we highlight the potential use of complement factor H as an inhibitor of CARPA

    Infusion Reactions Associated with the Medical Application of Monoclonal Antibodies: The Role of Complement Activation and Possibility of Inhibition by Factor H

    Get PDF
    Human application of monoclonal antibodies (mAbs), enzymes, as well as contrast media and many other particulate drugs and agents referred to as “nanomedicines”, can initiate pseudoallergic hypersensitivity reactions, also known as infusion reactions. These may in part be mediated by the activation of the complement system, a major humoral defense system of innate immunity. In this review, we provide a brief outline of complement activation-related pseudoallergy (CARPA) in general, and then focus on the reactions caused by mAb therapy. Because the alternative pathway of complement activation may amplify such adverse reactions, we highlight the potential use of complement factor H as an inhibitor of CARPA

    Flow cytometric analysis of supravesicular structures in doxorubicin-containing pegylated liposomes

    Full text link
    In an attempt to develop a quantitative assay for supravesicular structures (SVS) - such as aggregates, fused liposomes or solid lipid particles - in liposome preparations, forward vs. side scattering of liposomal doxorubicin (Doxil/Caelyx) was analyzed by flow cytometry. Based on calibration with fluorescent latex beads, the size resolution was between about 500 and 1000nm. Caelyx, just as structurally matched empty liposomes (Doxebo) produced dot plots clearly distinguishable from background, suggesting the presence of SVS in the above size region. A comparison of gated areas on the scattergrams obtained for different Caelyx preparations showed differences between current and expired samples, implying that SVS formation may be storage-time-dependent. Incubation of doxorubicin with Doxebo in a free drug and lipid concentration range that corresponds to that in Caelyx also led to varying SVS patterns, raising the possibility that free doxorubicin in Caelyx might contribute to SVS formation. Dynamic light scattering and transmission electron microscopic analysis of liposomes following gaiting and sorting of >500nm particles from Caelyx confirmed the presence of SVS, providing independent evidence for their stable existence. Based on a rough estimation, the amount of SVS in Caelyx is some 60 billionth part of all liposomes. These observations raise the possibility that the presence of an exceedingly small fraction of >500nm particles may be an intrinsic property of PEGylated small unilamellar liposomes, and that the described FACS analysis may be developed further as a quality assay for liposomal homogeneity

    Flow Cytometry-Based Assay to Detect Alpha Galactosidase Enzymatic Activity at the Cellular Level

    Full text link
    Background: Fabry disease is a progressive, X chromosome-linked lysosomal storage disorder with multiple organ dysfunction. Due to the absence or reduced activity of alpha-galactosidase A (AGAL), glycosphingolipids, primarily globotriaosyl-ceramide (Gb3), concentrate in cells. In heterozygous women, symptomatology is heterogenous and currently routinely used fluorometry-based assays measuring mean activity mostly fail to uncover AGAL dysfunction. The aim was the development of a flow cytometry assay to measure AGAL activity in individual cells. Methods: Conventional and multispectral imaging flow cytometry was used to detect AGAL activity. Specificity was validated using the GLA knockout (KO) Jurkat cell line and AGAL inhibitor 1-deoxygalactonojirimycin. The GLA KO cell line was generated via CRISPR-Cas9-based transfection, validated with exome sequencing, gene expression and substrate accumulation. Results: Flow cytometric detection of specific AGAL activity is feasible with fluorescently labelled Gb3. In the case of Jurkat cells, a substrate concentration of 2.83 nmol/mL and 6 h of incubation are required. Quenching of the aspecific exofacial binding of Gb3 with 20% trypan blue solution is necessary for the specific detection of lysosomal substrate accumulation. Conclusion: A flow cytometry-based assay was developed for the quantitative detection of AGAL activity at the single-cell level, which may contribute to the diagnosis of Fabry patients
    corecore