8 research outputs found

    Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors

    Get PDF
    © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc. We conducted the first-in-human study of 18F-fluoroethyl triazole [Tyr3] octreotate (18F-FET-βAG-TOCA) in patients with neuroendocrine tumors (NETs) to evaluate biodistribution, dosimetry, and safety. Despite advances in clinical imaging, detection and quantification of NET activity remains a challenge, with no universally accepted imaging standard. Methods: Nine patients were enrolled. Eight patients had sporadic NETs, and 1 had multiple endocrine neoplasia type 1 syndrome. Patients received 137-163 MBq (mean ± SD, 155.7 ± 8 MBq) of 18F-FET-βAG-TOCA. Safety data were obtained during and 24 h after radioligand administration. Patients underwent detailed wholebody PET/CT multibed scanning over 4 h with sampling of venous bloods for radioactivity and radioactive metabolite quantification. Regions of interest were defined to derive individual and mean organ residence times; effective dose was calculated with OLINDA 1.1. Results: All patients tolerated 18F-FET-βAG-TOCA with no adverse events. Over 60% parent radioligand was present in plasma at 60 min. High tumor (primary and metastases)-to-background contrast images were observed. Physiologic distribution was seen in the pituitary, salivary glands, thyroid, and spleen, with low background distribution in the liver, an organ in which metastases commonly occur. The organs receiving highest absorbed dose were the gallbladder, spleen, stomach, liver, kidneys, and bladder. The calculated effective dose over all subjects (mean ± SD) was 0.029 ± 0.004 mSv/MBq. Conclusion: The favorable safety, imaging, and dosimetric profile makes 18F-FET-βAGTOCA a promising candidate radioligand for staging and management of NETs. Clinical studies in an expanded cohort are ongoing to clinically qualify this agent

    Bench to Bedside Development of [18F]Fluoromethyl-(1,2-2H4)choline ([18F]D4-FCH)

    Get PDF
    malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHK alpha). due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [F-18]fluoromethyl-[1,2-H-2(4)]choline ([F-18]D4-FCH). [F-18]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a H-1/D-2 isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [F-18]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [F-18]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [F-18]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12-16 weeks despite predominantly stable radiological appearances. the sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival

    Bench to Bedside Development of [18F]Fluoromethyl-(1,2-2H4)choline ([18F]D4-FCH)

    Get PDF
    Malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHKα). Due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [18F]fluoromethyl-[1,2-2H4]choline ([18F]D4-FCH). [18F]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a 1H/2D isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [18F]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [18F]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [18F]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. Treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12–16 weeks despite predominantly stable radiological appearances. The sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival

    [ 18

    No full text
    corecore