479 research outputs found
Laser doppler spectrum decomposition applied in diagnostics of microcirculatory disturbances
Laser Doppler flowmetry (LDF) is widely used to study blood microcirculation in the skin. However, during tradition signal processing based on the integral estimations of the power spectrum of detector photocurrent, the significant part of the information about the skin blood ow is lost. In this study, we propose to analyse the distribution of the blood perfusion over the Doppler shift frequencies, which correlate with the RBC velocity. This approach provides localisation of the blood ow oscillations in different subranges of the Doppler shift. The method applied together with the wavelet analysis has been tested in healthy volunteers and patients with psoriasis on the unaffected surface of the skin. It was revealed, that the significant difference in the amplitude of myogenic oscillations is allocated in the region of the low frequency Doppler shift (1-200 Hz). This frequency region can be associated with the signal from slow components of the skin microcirculation, that can point out on a different state of the lymphatic system of the skin in psoriasis
Propagation and interaction of ultrashort electromagnetic pulses in nonlinear media with a quadratic-cubic nonlinearity
Propagation of extremely short unipolar pulses of electromagnetic field
("videopulses") is considered in the framework of a model in which the material
medium is represented by anharmonic oscillators (approximating bound electrons)
with quadratic and cubic nonlinearities. Two families of exact analytical
solutions (with positive or negative polarity) are found for the moving
solitary pulses. Direct simulations demonstrate that the pulses are very robust
against perturbations. Two unipolar pulses collide nearly elastically, while
collisions between pulses with opposite polarities and a small relative
velocity are inelastic, leading to emission of radiation and generation of a
small-amplitude additional pulse.Comment: 12 pages, 10 figure
Intra-arterial tert-Butyl-Hydroperoxide Infusion Induces an Exacerbated Sensory Response in the Rat Hind Limb and is Associated with an Impaired Tissue Oxygen Uptake
The objective of this study was to investigate oxidative stress and oxygen extraction mechanisms in an animal model of continuous intra-arterial infusion of a free radical donor and in an in vitro model using isolated mitochondria. tert-Butyl-hydroperoxide (tert-BuOOH, 25 mM) was infused for 24 h in the left hind limb of rats to induce soft tissue damage (n = 8). After 7 days, we assessed local sensory response, tissue oxygen consumption, oxygen radicals, and antioxidant levels. In vitro mitochondrial function was measured after stimulation of isolated mitochondria of skeletal muscle cells with increasing doses of tert-BuOOH. tert-BuOOH infusion resulted in an increased skin temperature (p = 0.04), impaired function, and a significantly increased pain sensation (p = 0.03). Venous oxygen saturation levels (p = 0.01) and the antioxidant ceruloplasmin (p = 0.04) were increased. tert-BuOOH inhibited mitochondrial function in vitro. Induction of free radical formation in the rat hind limb results in an exacerbated sensory response and is associated with impaired oxygen extraction, which likely results from mitochondrial dysfunction caused by free radicals
Wearable laser Doppler sensors for evaluating the nutritive and shunt blood flow
This study is devoted to the trials of wearable diagnostic system that implements the laser Doppler flowmetry technique to analyse the blood microcirculation. We do preliminary test with involvement of limited group of healthy volunteers of different age and in patients with type 2 diabetes. During the series of measurements, the microcirculation parameters was measured for 10 minutes in the palmar surfaces of the big toes and in the inner sides of the upper thirds of the shins. A statistically significant differences was found in bypass index, nutritive and shunt blood ow in shins between older group of volunteers and patients' group as well as in shunt blood flow in fingers between younger and older groups of volunteers
Peculiarities of local blood microcirculation in patients with psoriasis
Local hemodynamic parameters were studied by means of laser Doppler flowmetry in 15 patients with psoriasis in the stationary stage, who have plaques on the inner surface of the forearm. LDF signals recorded at the site of psoriatic lesions of the tissue as well as in the intact tissue at a distance of 1-2 cm from the affected area were analysed. LDF signals were postprocessed by continuous wavelet transform using the Morlet wavelet
Studies of age-related changes in blood perfusion coherence using wearable blood perfusion sensor system
Laser Doppler flowmetry (LDF) was used for detection of age-related changes in the blood microcirculation. The LDF signal was simultaneously recorded from the 3rd fingers' pads of both hands. Amplitudes of the blood flow oscillations and wavelet coherence of the signals were used for the data analysis. A statistical difference in the synchronisation of myogenic oscillations was found between the two studied age groups. Myogenic oscillations of blood perfusion in the younger group had a higher wavelet coherence parameter than in the older group. Observed site-specific and age-related differences in blood perfusion can be used in the future in the design of experimental studies of the blood microcirculation system in patients with different pathologies
Pilot studies of age-related changes in blood perfusion in two different types of skin
Laser Doppler flowmetry (LDF) was utilized to assess age-related changes in the blood microcirculation at the skin sites with different morphology and regulation. The LDF signals obtained from the glabrous skin of the middle finger pad and nonglabrous skin on the dorsal wrist surface were analyzed. Statistically higher baseline perfusion was observed in the zone with glabrous skin in the older group of volunteers compared to younger participants. Observed site-specific and age-related differences in perfusion can be used in the future experimental design for the studies of the blood microcirculation system in patients with different pathologies
Investigation of blood microcirculation parameters in patients with rheumatic diseases by videocapillaroscopy and laser Doppler flowmetry during cold pressor test
Videocapillaroscopy (VCS) and laser Doppler flowmetry (LDF) are non-invasive methods for evaluating microcirculation parameters. The VCS method is based on a high-speed video recording of capillaries in the nailfold. The recorded video frames are processed using a specialized algorithm to determine the red blood cells velocity. The LDF technique is based on the analysis of the Doppler shift of back-scattered laser radiation from moving red blood cells. In this work, simultaneous measurements of VCS and LDF have been performed in healthy volunteers and rheumatic patient. The study was conducted using a cold pressor test. Changes were recorded in response to cold exposure in rheumatic diseases
Wearable sensor system for multipoint measurements of blood perfusion: pilot studies in patients with diabetes mellitus
The growing interest in the development of new wearable electronic devices for mobile healthcare provides great opportunities for the development of methods for assessing blood perfusion in this direction. Laser Doppler flowmetry (LDF) is one of the promising methods. A fine analysis of capillary blood ow structure and rhythm in the time and frequency domains, coupled with a new possibility of round-the-clock monitoring can provide valuable diagnostic information about the state of microvascular blood ow. In this study, wearable implementation of laser Doppler flowmetry was utilised for microcirculatory function assessment in patients with diabetes and healthy controls of two distinct age groups. Four wearable laser Doppler flowmetry monitors were used for the analysis of blood microcirculation. Thirty-seven healthy volunteers and 18 patients with type 2 diabetes mellitus participated in the study. The results of the studies have shown that the average perfusion differs between healthy volunteers of distinct age groups and between healthy volunteers of the younger age group and patients with diabetes mellitus. It was noted that the average level of perfusion measured on the wrist in the two groups of healthy volunteers has no statistically significant differences found in similar measurements on the fingertips. The wearable implementation of LDF can become a truly new diagnostic interface to monitor cardiovascular parameters, which could be of interest for diagnostics of conditions associated with microvascular disorders
- …