11 research outputs found

    Activating Transcription Factor 4 Modulates TGFβ-Induced Aggressiveness in Triple-Negative Breast Cancer via SMAD2/3/4 and mTORC2 Signaling

    Get PDF
    Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFβ1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFβ and ATF4. Defining the signaling pathways may help us identify a cell signaling-tailored gene signature.Experimental Design: Patient survival data were determined by Kaplan-Meier analysis. Relationship between TGFβ and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX).Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFβ was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial-mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFβ/SMAD and mTOR/RAC1-RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer.Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway-based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer

    Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models

    No full text
    Abstract Background Breast cancer has been considered not highly immunogenic, and few patients benefit from current immunotherapies. However, new strategies are aimed at changing this paradigm. In the present study, we examined the in vivo activity of a humanized anti-programmed cell death protein 1 (anti-PD-1) antibody against triple-negative breast cancer (TNBC) patient-derived xenograft (PDX) tumor models. Methods To circumvent some of the limitations posed by the lack of appropriate animal models in preclinical studies of immunotherapies, partially human leukocyte antigen-matched TNBC PDX tumor lines from our collection, as well as human melanoma cell lines, were engrafted in humanized nonobese diabetic/severe combined immunodeficiency IL2Rγ null (hNSG) mice obtained by intravenous injection of CD34+ hematopoietic stem cells into nonlethally irradiated 3–4-week-old mice. After both PDXs and melanoma cell xenografts reached ~ 150–200 mm3, animals were treated with humanized anti-PD-1 antibody or anti-CTLA-4 and evaluated for tumor growth, survival, and potential mechanism of action. Results Human CD45+, CD20+, CD3+, CD8+, CD56+, CD68+, and CD33+ cells were readily identified in blood, spleen, and bone marrow collected from hNSG, as well as human cytokines in blood and engrafted tumors. Engraftment of TNBC PDXs in hNSG was high (~ 85%), although they grew at a slightly slower pace and conserved their ability to generate lung metastasis. Human CD45+ cells were detectable in hNSG-harbored PDXs, and consistent with clinical observations, anti-PD-1 antibody therapy resulted in both a significant reduction in tumor growth and increased survival in some of the hNSG PDX tumor lines, whereas no such effects were observed in the corresponding non-hNSG models. Conclusions This study provides evidence associated with anti-PD-1 immunotherapy against TNBC tumors supporting the use of TNBC PDXs in humanized mice as a model to overcome some of the technical difficulties associated with the preclinical investigation of immune-based therapies

    Pharmacological Inhibition of NOS Activates ASK1/JNK Pathway Augmenting Docetaxel-Mediated Apoptosis in Triple-Negative Breast Cancer.

    Get PDF
    Purpose: Chemoresistance in triple-negative breast cancer (TNBC) is associated with the activation of a survival mechanism orchestrated by the endoplasmic reticulum (EnR) stress response and by inducible nitric oxide synthase (iNOS). Our aim was to determine the effects of pharmacologic NOS inhibition on TNBC.Experimental Design: TNBC cell lines, SUM-159PT, MDA-MB-436, and MDA-MB-468, were treated with docetaxel and NOS inhibitor (L-NMMA) for 24, 48, and 72 hours. Apoptosis was assessed by flow cytometry using Annexin-V and propidium iodide. Western blot was used to assess ER stress and apoptosis, and rtPCR was used to evaluate s-XBP1. TNBC patient-derived xenografts (PDX) were treated either with vehicle, docetaxel, or combination therapy (NOS inhibition + docetaxel). Mouse weight and tumor volumes were recorded twice weekly. Docetaxel concentration was determined using mass spectrometry. To quantify proliferation and apoptosis, PDX tumor samples were stained using Ki67 and TUNEL assay.Results:In vitro, L-NMMA ameliorated the iNOS upregulation associated with docetaxel. Apoptosis increased when TNBC cells were treated with combination therapy. In TNBC PDXs, combination therapy significantly reduced tumor volume growth and increased survival proportions. In the BCM-5998 PDX model, intratumoral docetaxel concentration was higher in mice receiving combination therapy. Coupling docetaxel with NOS inhibition increased EnR-stress response via coactivation of ATF4 and CHOP, which triggered the pASK1/JNK proapoptotic pathway, promoting cleavage of caspases 3 and 9.Conclusions: iNOS is a critical target for docetaxel resistance in TNBC. Pharmacologic inhibition of NOS enhanced chemotherapy response in TNBC PDX models. Combination therapy may improve prognosis and prevent relapse in TNBC patients who have failed conventional chemotherapy. Clin Cancer Res; 24(5); 1152-62. ©2018 AACR

    Bidirectional Power Stroke by Ncd Kinesin

    Get PDF
    Optical trapping experiments reveal details of molecular motor dynamics. In noisy data, temporal structure within the power stroke of motors can be analyzed by ensemble averaging, but this obscures infrequent subcategories of events. We have here developed an analysis method that uses Kalman filtering of measurements, model-based estimation of the power strokes produced by the motor head, and automatic event classification to discriminate between different types of motor events. This method was applied to optical trap measurements of power strokes of the Drosophila kinesin-14 ncd in a three-bead geometry. We found the majority of events to be consistent with the previously discovered minus-end directed power stroke of ncd, occurring with ATP binding. Unexpectedly, 30% of apparent power strokes were plus-directed and 6% of binding events did not terminate in a discernible stroke. Ensemble averaging for each event category revealed that plus- and minus-directed strokes have different size and occur at different instants within the ncd-MT attachment sequence

    Tight Functional Coupling of Kinesin-1A and Dynein Motors in the Bidirectional Transport of Neurofilaments

    No full text
    We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated
    corecore