6 research outputs found

    Tissue-specific actions of Pax6 on the balance of proliferation and differentiation in developing forebrain are Foxg1-dependent

    Get PDF
    Summary: Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another. : Neuroscience; Molecular Neuroscience; Developmental Neuroscience Subject Areas: Neuroscience, Molecular Neuroscience, Developmental Neuroscienc

    Experience-dependent changes in hippocampal spatial activity and hippocampal circuit function are disrupted in a rat model of Fragile X Syndrome

    Get PDF
    BACKGROUND: Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and autism spectrum disorder. Cognitive inflexibility is one of the hallmarks of FXS with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1(−/y)). METHODS: We recorded from the CA1 in Fmr1(−/y) and WT littermates over six 10-min exploration sessions in a novel environment—three sessions per day (ITI 10 min). Our recordings yielded 288 and 246 putative pyramidal cells from 7 WT and 7 Fmr1(−/y) rats, respectively. RESULTS: On the first day of exploration of a novel environment, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1(−/y) rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1(−/y) rats. These findings were consistent with increased excitability of Fmr1(−/y) CA1 neurons in ex vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were dis-coordinated with respect to hippocampal oscillatory activity in Fmr1(−/y) rats. LIMITATIONS: It is still unclear how the observed circuit function abnormalities give rise to behavioural deficits in Fmr1(−/y) rats. Future experiments will focus on this connection as well as the contribution of other neuronal cell types in the hippocampal circuit pathophysiology associated with the loss of FMRP. It would also be interesting to see if hippocampal circuit deficits converge with those seen in other rodent models of intellectual disability. CONCLUSIONS: In conclusion, we found that hippocampal place cells from Fmr1(−/y) rats show similar spatial firing properties as those from WT rats but do not show the same experience-dependent increase in spatial specificity or the experience-dependent changes in network coordination. Our findings offer support to a network-level origin of cognitive deficits in FXS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13229-022-00528-z

    Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion

    Get PDF
    BACKGROUND: Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2 +/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS: We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2 +/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS: We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2 +/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS: The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2 +/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS: We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2 +/- rats. </p

    Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals

    Get PDF
    The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors’ competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6’s main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions

    Imbalance of flight-freeze responses and their cellular correlates in the Nlgn3-/y rat model of autism

    Get PDF
    Abstract Background Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. Methods This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3 −/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3 −/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). Results We observed that, unlike the wildtype, Nlgn3 −/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3 −/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3 −/y than wildtype rats, indicating the functional impact of the increased cellular excitability. Limitations Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. Conclusions We describe altered fear responses in Nlgn3 −/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD

    Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion

    No full text
    Abstract Background Autism spectrum condition or ‘autism’ is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2 +/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. Methods We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8–26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2 +/- rat cerebral cortex and hippocampus at post-natal day (P) 21. Results We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2 +/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. Limitations The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2 +/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. Conclusions We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2 +/- rats
    corecore