19 research outputs found

    Morphology of the medial collateral ligament of the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for treatment of MCL injury and for MCL release during total knee arthroplasty (TKA). The objective of this study was to quantitatively determine the morphology of the MCL of human knees.</p> <p>Methods</p> <p>10 cadaveric human knees were dissected to investigate the MCL anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and morphometric measurements. The outlines of the insertion sites of the superficial MCL (sMCL) and deep MCL (dMCL) were digitized using a 3D digitizing system.</p> <p>Results</p> <p>The insertion areas of the superficial MCL (sMCL) were 348.6 ± 42.8 mm<sup>2 </sup>and 79.7 ± 17.6 mm<sup>2 </sup>on the tibia and femur, respectively. The insertion areas of the deep MCL (dMCL) were 63.6 ± 13.4 mm<sup>2 </sup>and 71.9 ± 14.8 mm<sup>2 </sup>on the tibia and femur, respectively. The distances from the centroids of the tibial and femoral insertions of the sMCL to the tibial and femoral joint line were 62.4 ± 5.5 mm and 31.1 ± 4.6 mm, respectively. The distances from the centroids of dMCL in the tibial insertion and the femoral insertion to the tibial and femoral joint line were 6.5 ± 1.3 mm and 20.5 ± 4.2 mm, respectively. The distal portion of the dMCL (meniscotibial ligament - MTL) was approximately 1.7 times wider than the proximal portion of the dMCL (meniscofemoral ligament - MFL), whereas the MFL was approximately 3 times longer than the MTL.</p> <p>Conclusions</p> <p>The morphologic data on the MCL may provide useful information for improving treatments of MCL-related pathology and performing MCL release during TKA.</p

    New fluoroscopic imaging technique for investigation of 6DOF knee kinematics during treadmill gait

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This report presents a new imaging technique for non-invasive study of six degrees of freedom (DOF) knee kinematics during treadmill gait.</p> <p>Materials and methods</p> <p>A treadmill was integrated into a dual fluoroscopic imaging system (DFIS) to formulate a gait analysis system. To demonstrate the application of the system, a healthy subject walked on the treadmill at four different speeds (1.5, 2.0, 2.5 and 3.0 MPH) while the DFIS captured the knee motion during three strides under each speed. Characters of knee joint motion were analyzed in 6DOF during the treadmill walking.</p> <p>Results</p> <p>The speed of the knee motion was lower than that of the treadmill. Flexion amplitudes increased with increasing walking speed. Motion patterns in other DOF were not affected by increase in walking speed. The motion character was repeatable under each treadmill speed.</p> <p>Conclusion</p> <p>The presented technique can be used to accurately measure the 6DOF knee kinematics at normal walking speeds.</p
    corecore