28 research outputs found
Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity
During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-ϐ-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein ϐ (C/EBPϐ) expression levels. The effect of C/EBPϐ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPϐ transgenic mice to investigate the relationship between C/EBPϐ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPϐ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPϐ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPϐ transgenic mice decreased C/EBPϐ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPϐ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure
ERIK: an isokinetic exercise device for the lower limbs
Abstract In the current study, we tested a prototype of an isokinetic exercise device for the lower limbs, named the ERIK. The ERIK enables a type of single-limb squat exercise with a translational load on the swing leg in a closed kinetic chain, putting load on the muscles of the stance leg in the standing position. This training applies load to the gluteal muscles, which is effective for avoiding excessive knee valgus moment, a major factor in anterior cruciate ligament injuries. To enhance the quality of the load, an electro-rheological (ER) fluid brake system is implemented in the ERIK. The ER brake can reversibly control resistive torque with a rapid response. This paper reports a prototype of the device with four training modes, verifying its performance through basic experiments. Although high resistance is created within a wide motion area and requires isokinetic training by controlling the velocity of the trainee’s legs, the ERIK has the advantage of a high level of safety because of its passive resistive function
Early administration of dapagliflozin preserves pancreatic β‐cell mass through a legacy effect in a mouse model of type 2 diabetes
Abstract Aims/Introduction The preservation of pancreatic β‐cell mass is an essential factor in the onset and development of type 2 diabetes mellitus. Recently, sodium–glucose cotransporter 2 inhibitors have been launched as antihyperglycemic agents, and their organ‐protective effects are attracting attention. They are also reported to have favorable effects on the preservation of pancreatic β‐cell mass, but the appropriate timing for the administration of sodium–glucose cotransporter 2 inhibitors is obscure. Materials and Methods In the present study, we administered a sodium–glucose cotransporter 2 inhibitor, dapagliflozin, to an animal model of type 2 diabetes mellitus, db/db mice, and investigated the adequate timing and duration for its administration. We also carried out microarray analysis using pancreatic islets from db/db mice. Results We found that dapagliflozin preserved pancreatic β‐cell mass depending on the duration of administration and markedly improved blood glucose levels. If the duration was the same, the earlier administration of dapagliflozin was more effective in preserving pancreatic β‐cell mass, increasing serum insulin levels and improving blood glucose levels. From microarray analysis, we discovered that the expression of Agr2, Tff2 and Gkn3 was significantly upregulated after the early administration of dapagliflozin. This upregulated gene expression might provide a legacy effect for the preservation of pancreatic β‐cell mass. Conclusions We expect that the early administration of dapagliflozin would provide a long‐lasting effect in preserving pancreatic β‐cell mass
Docosahexaenoic Acid Reduces Palmitic Acid-Induced Endoplasmic Reticulum Stress in Pancreatic Β Cells
Abstract: Endoplasmic reticulum (ER) stress leads to peripheral insulin resistance and the progression of pancreatic beta cell failure in type 2 diabetes. Although ER stress plays an important role in the pathogenesis of diabetes, it is indispensable for cellular activity. Therefore, when assessing the pathological significance of ER stress, it is important to monitor and quantify ER stress levels. Here, we have established a novel system to monitor ER stress levels quickly and sensitively, and using this method, we have clarified the effect of differences in glucose concentration and various fatty acids on the ER of pancreatic β cells. First, we developed a cell system that secretes Gaussia luciferase in culture medium depending on the activation of the GRP78 promoter. This system could sensitively monitor ER stress levels that could not be detected with real-time RT-PCR and immunoblotting. This system revealed that hyperglycemia does not induce unfolded protein response (UPR) in a short period of time in MIN6 cells, a mouse pancreatic β cell line. Physiological concentrations of palmitic acid, a saturated fatty acid, induced ER stress quickly, while physiological concentrations of oleic acid, an unsaturated fatty acid, did not. Docosahexaenoic acid, an n-3 unsaturated fatty acid, inhibited palmitic acid-induced ER stress. In this study, we have established a system that can sensitively detect ER stress levels of living cells in a short period of time. This system can be used to monitor the state of the ER in living cells and lead to the investigation of the significance of physiological or pathological ER stress levels
Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells.
Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes
Effects of specific HDAC inhibitors on insulin signaling through IRS2 lysine acetylation in MIN6 cells.
<p>(A) Immunoblot analysis of insulin signaling proteins in MIN6 cells treated with TSA or SAHA. Representative (left) and quantitative (right) data are shown. (B) Immunoblot analysis of IRS2, acetylated lysine, and phosphorylated tyrosine in MIN6 cells treated with TSA after protein interaction analysis using antibodies to IRS2. Representative (left) and quantitative (right) data are shown. (C) Proposed model of HDAC regulation of IRS2 expression and activity in β cells. Data are represented as the mean ± SEM for 5 (A, B) independent experiments. *<i>P</i> < 0.05.</p