4,814 research outputs found

    Scalar cosmological perturbations in the Gauss-Bonnet braneworld

    Get PDF
    We study scalar cosmological perturbations in a braneworld model with a bulk Gauss-Bonnet term. For an anti-de Sitter bulk, the five-dimensional perturbation equations share the same form as in the Randall-Sundrum model, which allows us to obtain metric perturbations in terms of a master variable. We derive the boundary conditions for the master variable from the generalized junction conditions on the brane. We then investigate several limiting cases in which the junction equations are reduced to a feasible level. In the low energy limit, we confirm that the standard result of four-dimensional Einstein gravity is reproduced on large scales, whereas on small scales we find that the perturbation dynamics is described by the four-dimensional Brans-Dicke theory. In the high energy limit, all the non-local contributions drop off from the junction equations, leaving a closed system of equations on the brane. We show that, for inflation models driven by a scalar field on the brane, the Sasaki-Mukhanov equation holds on the high energy brane in its original four-dimensional form.Comment: 18 pages, v2: minor changes, reference added, v3: comments and references added, accepted for publication in JCA

    1E 1547.0-5408: a radio-emitting magnetar with a rotation period of 2 seconds

    Full text link
    The variable X-ray source 1E 1547.0-5408 was identified by Gelfand & Gaensler (2007) as a likely magnetar in G327.24-0.13, an apparent supernova remnant. No X-ray pulsations have been detected from it. Using the Parkes radio telescope, we discovered pulsations with period P = 2.069 s. Using the Australia Telescope Compact Array, we localized these to 1E 1547.0-5408. We measure dP/dt = (2.318+-0.005)e-11, which for a magnetic dipole rotating in vacuo gives a surface field strength of 2.2e14 G, a characteristic age of 1.4 kyr, and a spin-down luminosity of 1.0e35 ergs/s. Together with its X-ray characteristics, these rotational parameters of 1E 1547.0-5408 prove that it is a magnetar, only the second known to emit radio waves. The distance is ~9 kpc, derived from the dispersion measure of 830 pc/cc. The pulse profile at a frequency of 1.4 GHz is extremely broad and asymmetric due to multipath propagation in the ISM, as a result of which only approximately 75% of the total flux at 1.4 GHz is pulsed. At higher frequencies the profile is more symmetric and has FWHM = 0.12P. Unlike in normal radio pulsars, but in common with the other known radio-emitting magnetar, XTE J1810-197, the spectrum over 1.4-6.6 GHz is flat or rising, and we observe large, sudden changes in the pulse shape. In a contemporaneous Swift X-ray observation, 1E 1547.0-5408 was detected with record high flux, f_X(1-8 keV) ~ 5e-12 ergs/cm^2/s, 16 times the historic minimum. The pulsar was undetected in archival radio observations from 1998, implying a flux < 0.2 times the present level. Together with the transient behavior of XTE J1810-197, these results suggest that radio emission is triggered by X-ray outbursts of usually quiescent magnetars.Comment: Accepted for publication in ApJ Letter

    Contiguous redshift parameterizations of the growth index

    Full text link
    The growth rate of matter perturbations can be used to distinguish between different gravity theories and to distinguish between dark energy and modified gravity at cosmological scales as an explanation to the observed cosmic acceleration. We suggest here parameterizations of the growth index as functions of the redshift. The first one is given by γ(a)=γ~(a)11+(attc/a)+γearly11+(a/attc)\gamma(a)=\tilde\gamma(a) \frac{1}{1+(a_{_{ttc}}/a)}+\gamma_{_{early}} \frac{1}{1+(a/a_{_{ttc}})} that interpolates between a low/intermediate redshift parameterization γ~(a)=γlate(a)=γ0+(1a)γa\tilde\gamma(a)=\gamma_{_{late}}(a)= \gamma_0 + (1-a) \gamma_a and a high redshift γearly\gamma_{_{early}} constant value. For example, our interpolated form γ(a)\gamma(a) can be used when including the CMB to the rest of the data while the form γlate(a)\gamma_{_{late}}(a) can be used otherwise. It is found that the parameterizations proposed achieve a fit that is better than 0.004% for the growth rate in a Λ\LambdaCDM model, better than 0.014% for Quintessence-Cold-Dark-Matter (QCDM) models, and better than 0.04% for the flat Dvali-Gabadadze-Porrati (DGP) model (with Ωm0=0.27\Omega_m^0=0.27) for the entire redshift range up to zCMBz_{_{CMB}}. We find that the growth index parameters (γ0,γa)(\gamma_0,\gamma_a) take distinctive values for dark energy models and modified gravity models, e.g. (0.5655,0.02718)(0.5655,-0.02718) for the Λ\LambdaCDM model and (0.6418,0.06261)(0.6418,0.06261) for the flat DGP model. This provides a means for future observational data to distinguish between the models.Comment: 7 pages, 6 figures, matches PRD accepted versio

    Characteristics of Diffuse X-Ray Line Emission within 20 pc of the Galactic Center

    Full text link
    Over the last 3 yrs, the Galactic center (GC) region has been monitored with the Chandra X-Ray Observatory. With 11 Chandra observations through 2002 June, the total effective exposure reaches ~590 ks, providing significant photon statistics on the faint, filamentary, diffuse X-ray emission. The true-color X-ray image and the equivalent width (EW) images for the detected elemental species demonstrate that the diffuse X-ray features have a broad range of spatio-spectral properties. Enhancements of the low-ionization-state, or ``neutral'' Fe line emission (E~6.4 keV) to the northeast of Sgr A* can be interpreted as fluorescence within the dense ISM resulting from irradiation by hard, external X-ray sources. They may also be explained by emission induced by the bombardments by high energy particles on the ISM, such as unresolved supernova (SN) ejecta intruding into dense ISM. The detection of molecular cloud counterparts to the 6.4 keV Fe line features indicates that these Fe line features are associated with dense GC clouds and/or active star-forming regions, which supports the X-ray reflection and/or SN ejecta origins for the Fe line emission. We detect highly ionized S and Si lines which are generally coincident with the neutral Fe line emission and the dense molecular clouds in the northeast of Sgr A*. These hot plasmas are likely produced by massive star-forming activities and/or SNRs. In contrast, we find that highly ionized He-like Fe line emission (E~6.7 keV) is primarily distributed along the plane instead of being concentrated in the northeast of Sgr A*. The implied high temperature and the alignment along the plane are consistent with the magnetic confinement model.Comment: 13 pages (ApJ emulator style) including 4 figures (2 color figs). Accepted by ApJ. For full-quality figures, contact [email protected]

    Quasi-periodic X-ray Flares from the Protostar YLW15

    Get PDF
    With ASCA, we have detected three X-ray flares from the Class I protostar YLW15. The flares occurred every ~20 hours and showed an exponential decay with time constant 30-60 ks. The X-ray spectra are explained by a thin thermal plasma emission. The plasma temperature shows a fast-rise and slow-decay for each flare with kT_{peak}~4-6 keV. The emission measure of the plasma shows this time profile only for the first flare, and remains almost constant during the second and third flares at the level of the tail of the first flare. The peak flare luminosities L_{X,peak} were ~5-20 * 10^{31} erg s^{-1}, which are among the brightest X-ray luminosities observed to date for Class I protostars. The total energy released in each flare was 3-6*10^{36} ergs. The first flare is well reproduced by the quasi-static cooling model, which is based on solar flares, and it suggests that the plasma cools mainly radiatively, confined by a semi-circular magnetic loop of length ~14 Ro with diameter-to-length ratio \~0.07. The two subsequent flares were consistent with the reheating of the same magnetic structure as of the first flare. The large-scale magnetic structure and the periodicity of the flares imply that the reheating events of the same magnetic loop originate in an interaction between the star and the disk due to the differential rotation.Comment: Accepted by ApJ, 9 pages incl. 4 ps figure

    Charge Exchange Spectra of Hydrogenic and He-like Iron

    Full text link
    We present H-like Fe XXVI and He-like Fe XXV charge-exchange spectra resulting from collisions of highly charged iron with N2 gas at an energy of 10 eV/amu in an electron beam ion trap. Although individual high-n emission lines are not resolved in our measurements, we observe that the most likely level for Fe25+ --> Fe24+ electron capture is n~9, in line with expectations, while the most likely value for Fe26+ --> Fe25+ charge exchange is significantly higher. In the Fe XXV spectrum, the K-alpha emission feature dominates, whether produced via charge exchange or collisional excitation. The K-alpha centroid is lower in energy for the former case than the latter (6666 versus 6685 eV, respectively), as expected because of the strong enhancement of emission from the forbidden and intercombination lines, relative to the resonance line, in charge-exchange spectra. In contrast, the Fe XXVI high-n Lyman lines have a summed intensity greater than that of Ly-alpha, and are substantially stronger than predicted from theoretical calculations of charge exchange with atomic H. We conclude that the angular momentum distribution resulting from electron capture using a multi-electron target gas is significantly different from that obtained with H, resulting in the observed high-n enhancement. A discussion is presented of the relevance of our results to studies of diffuse Fe emission in the Galactic Center and Galactic Ridge, particularly with ASTRO-E2/Suzaku.Comment: 16 pages, 4 figures (3 color), accepted by Ap

    Non-Gaussian signatures of Tachyacoustic Cosmology

    Full text link
    I investigate non-Gaussian signatures in the context of tachyacoustic cosmology, that is, a noninflationary model with superluminal speed of sound. I calculate the full non-Gaussian amplitude A\mathcal{A}, its size fNLf_{\rm NL}, and corresponding shapes for a red-tilted spectrum of primordial scalar perturbations. Specifically, for cuscuton-like models I show that fNLO(1)f_{\rm NL}\sim {\cal O}(1), and the shape of its non-Gaussian amplitude peaks for both equilateral and local configurations, the latter being dominant. These results, albeit similar, are quantitatively distinct from the corresponding ones obtained by Magueijo {\it{et. al}} in the context of superluminal bimetric models.Comment: Some comments and references added. Matches the version published in JCA

    New X-ray views of the Galactic center observed with Suzaku

    Get PDF
    We report the diffuse X-ray emissions from the Sgr A and B regions observed with Suzaku. From the Sgr A region, we found many K-shell transition lines of iron and nickel. The brightest are K alpha lines from FeI, FeXXV and FeXXVI at 6.4 keV, 6.7 keV and 6.9 keV. In addition, K alpha lines of NiI and NiXXVII, K beta of FeI, FeXXV and FeXXVI, and K gamma of FeXXV and FeXXVI are detected for the first time. The center energy of K alpha of FeXXV favors collisional excitation as the origin for this line emission. The ionization temperature determined from the flux ratio of K alpha of FeXXV and FeXXVI is similar to the electron temperature determined from the flux ratio of K alpha and K beta of FeXXV, which are in the range of 5-7 keV. Consequently, the Galactic Center diffuse X-rays (GCDX) are consistent with emission from a plasma nearly in ionization equilibrium. The radio complex Sgr B region also exhibits K alpha lines of FeI, FeXXV and FeXXVI. The 6.7 keV line (FeXXV) map exhibits a local excess at (l,b) = (0.612, 0.01), and could be a new young SNR. The 6.4 keV image is clumpy with local excesses near Sgr B2 and at (l,b) = (0.74, -0.09). Like Sgr B2, this latter excess may be another X-ray reflection Nebulae (XRN).Comment: 9 pages, 8 figures, to be published in the proceedings of Galactic Center Workshop 200

    Curvature perturbations from ekpyrotic collapse with multiple fields

    Get PDF
    A scale-invariant spectrum of isocurvature perturbations is generated during collapse in the ekpyrotic scaling solution in models where multiple fields have steep negative exponential potentials. The scale invariance of the spectrum is realized by a tachyonic instability in the isocurvature field. This instability drives the scaling solution to the late time attractor that is the old ekpyrotic collapse dominated by a single field. We show that the transition from the scaling solution to the single field dominated ekpyrotic collapse automatically converts the initial isocurvature perturbations about the scaling solution to comoving curvature perturbations about the late-time attractor. The final amplitude of the comoving curvature perturbation is determined by the Hubble scale at the transition.Comment: 15 pages, 3 figures, a reference added, to be published in CQG, a remark on the comoving density perturbation correcte

    Formation of fractal structure in many-body systems with attractive power-law potentials

    Full text link
    We study the formation of fractal structure in one-dimensional many-body systems with attractive power-law potentials. Numerical analysis shows that the range of the index of the power for which fractal structure emerges is limited. Dependence of the growth rate on wavenumber and power-index is obtained by linear analysis of the collisionless Boltzmann equation, which supports the numerical results.Comment: accepted by PR
    corecore