82 research outputs found
Hydrogen embrittlement of CrCoFeMnNi high-entropy alloys: Cases of monotonic tension and fatigue loading
Please click Additional Files below to see the full abstrac
Hydrogen-induced degradation of mechanical properties despite reduction in brittle fracture-features in a 1.5 GPa dual-phase steel
Please click Additional Files below to see the full abstrac
Hydrogen-assisted crack propagation in pre-strained twinning-induced plasticity steel: From initiation at a small defect to failure
Hydrogen-assisted crack growth of pre-strained twinning-induced plasticity (TWIP) steel was investigated using artificial defects (micro-drilled holes), which acted as artificial crack initiation sites. Hydrogen was introduced into the specimens by electrochemical hydrogen charging during slow strain rate tensile test. The quasi-cleavage crack propagation observed was due to repeated crack initiation near the crack tip and subsequent coalescence. Crack initiation near the crack tip occurred after plastic deformation of the crack tip, and pre-straining facilitated plasticity-driven crack initiation. The early stage of plasticity-driven crack growth was sensitive to the crack length and remote stress level. Accordingly, the crack growth rate in the early stage increased with the increase in the initial defect size. In the following stage of the crack growth, the crack growth rate exhibited a complicated trend with respect to the crack length, which is possibly due to the plastic-wake-altered stress field around the crack tip, which depends on the initial defect size
Tensile Testing with Cyclic Strain Holding to Analyze Dynamic Recrystallization of Pure Lead
We analyzed the dynamic recrystallization of pure lead by tensile testing with cyclic strain holding at room temperature. The specimens were held at an identical strain and subsequently reloaded, providing the strength before and after the strain holding process. The difference in strength enables factors affecting dynamic recrystallization behavior to be analyzed through mechanical testing. For instance, the effects of strain rate on dynamic recrystallization were analyzed by comparing the results obtained from tensile tests with and without strain holding. This experimental technique demonstrated some parts of contribution of elastic strain, dynamic recovery, dynamic recrystallization, and necking to stress-strain responses
Tensile Testing with Cyclic Strain Holding to Analyze Dynamic Recrystallization of Pure Lead
We analyzed the dynamic recrystallization of pure lead by tensile testing with cyclic strain holding at room temperature. The specimens were held at an identical strain and subsequently reloaded, providing the strength before and after the strain holding process. The difference in strength enables factors affecting dynamic recrystallization behavior to be analyzed through mechanical testing. For instance, the effects of strain rate on dynamic recrystallization were analyzed by comparing the results obtained from tensile tests with and without strain holding. This experimental technique demonstrated some parts of contribution of elastic strain, dynamic recovery, dynamic recrystallization, and necking to stress-strain responses
- …