8,441 research outputs found
Quantization of scalar perturbations in brane-world inflation
We consider a quantization of scalar perturbations about a de Sitter brane in
a 5-dimensional anti-de Sitter (AdS) bulk spacetime. We first derive the second
order action for a master variable for 5-dimensional gravitational
perturbations. For a vacuum brane, there is a continuum of normalizable
Kaluza-Klein (KK) modes with . There is also a light radion mode with
which satisfies the junction conditions for two branes, but is
non-normalizable for a single brane model. We perform the quantization of these
bulk perturbations and calculate the effective energy density of the projected
Weyl tensor on the barne. If there is a test scalar field perturbation on the
brane, the mode together with the zero-mode and an infinite ladder
of discrete tachyonic modes become normalizable in a single brane model. This
infinite ladder of discrete modes as well as the continuum of KK modes with
introduce corrections to the scalar field perturbations at first-order
in a slow-roll expansion. We derive the second order action for the
Mukhanov-Sasaki variable coupled to the bulk perturbations which is needed to
perform the quantization and determine the amplitude of scalar perturbations
generated during inflation on the brane.Comment: 14 page
OECD\u27s FDI Regulatory Restrictiveness Index: Revision And Extension To More Economies
This paper provides a revised measure of regulatory restrictions on inward foreign direct investment (FDI) for OECD countries and extends the approach to 13 non-member countries. The methodology is largely similar to that adopted in the previous version of the OECD indicator and covers three broad categories of restrictions: limitations on foreign ownership, screening or notification procedures, and management and operational restrictions. The FDI restrictiveness indicator captures statutory deviations from national treatment , i.e. discrimination against foreign investment. When combined with other factors having an influence on foreign investment decisions, it has proven to be a good predictor of countries\u27 inward FDI performance
Numerical study of curvature perturbations in a brane-world inflation at high-energies
We study the evolution of scalar curvature perturbations in a brane-world
inflation model in a 5D Anti-de Sitter spacetime. The inflaton perturbations
are confined to a 4D brane but they are coupled to the 5D bulk metric
perturbations. We numerically solve full coupled equations for the inflaton
perturbations and the 5D metric perturbations using Hawkins-Lidsey inflationary
model. At an initial time, we assume that the bulk is unperturbed. We find that
the inflaton perturbations at high energies are strongly coupled to the bulk
metric perturbations even on subhorizon scales, leading to the suppression of
the amplitude of the comoving curvature perturbations at a horizon crossing.
This indicates that the linear perturbations of the inflaton field does not
obey the usual 4D Klein-Gordon equation due to the coupling to 5D gravitational
field on small scales and it is required to quantise the coupled brane-bulk
system in a consistent way in order to calculate the spectrum of the scalar
perturbations in a brane-world inflation.Comment: 16 pages, 5 figure
Gravitational backreaction of anti-D branes in the warped compactification
We derive a low-energy effective theory for gravity with anti-D branes, which
are essential to get de Sitter solutions in the type IIB string warped
compactification, by taking account of gravitational backreactions of anti-D
branes. In order to see the effects of the self-gravity of anti-D branes, a
simplified model is studied where a 5-dimensional anti-de Sitter ({\it AdS})
spacetime is realized by the bulk cosmological constant and the 5-form flux,
and anti-D branes are coupled to the 5-form field by Chern-Simon terms. The
{\it AdS} spacetime is truncated by introducing UV and IR cut-off branes like
the Randall-Sundrum model. We derive an effective theory for gravity on the UV
brane and reproduce the familiar result that the tensions of the anti-D branes
give potentials suppressed by the forth-power of the warp factor at the
location of the anti-D branes. However, in this simplified model, the potential
energy never inflates the UV brane, although the anti-D-branes are inflating.
The UV brane is dominated by dark radiation coming from the projection of the
5-dimensional Weyl tensor, unless the moduli fields for the anti-D branes are
stabilized. We comment on the possibility of avoiding this problem in a
realistic string theory compactification.Comment: typos corrected, 11 pages, 3 figure
Scalar perturbations in braneworld cosmology
We study the behaviour of scalar perturbations in the radiation-dominated era
of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk
and brane master wave equations. We find that density perturbations with
wavelengths less than a critical value (set by the bulk curvature length) are
amplified during horizon re-entry. This means that the radiation era matter
power spectrum will be at least an order of magnitude larger than the
predictions of general relativity (GR) on small scales. Conversely, we
explicitly confirm from simulations that the spectrum is identical to GR on
large scales. Although this magnification is not relevant for the cosmic
microwave background or measurements of large scale structure, it will have
some bearing on the formation of primordial black holes in Randall-Sundrum
models.Comment: 17 pages, 7 figure
Joule heating generated by spin current through Josephson junctions
We theoretically study the spin-polarized current flowing through a Josephson
junction (JJ) in a spin injection device. When the spin-polarized current is
injected from a ferromagnet (FM) in a superconductor (SC), the charge current
is carried by the superconducting condensate (Cooper pairs), while the spin-up
and spin-down currents flow in the equal magnitude but in the opposite
direction in SC, because of no quasiparticle charge current in SC. This
indicates that not only the Josephson current but also the spin current flow
across JJ at zero bias voltage, thereby generating Joule heating by the spin
current. The result provides a new method for detecting the spin current by
measuring Joule heating at JJ.Comment: 3 pages, 2 figure
Voltage-biased I-V characteristics in the multi-Josephson junction model of high T superconductor
By use of the multi-Josephson junction model, we investigate voltage-biased
I-V characteristics. Differently from the case of the single junction, I-V
characteristics show a complicated behavior due to inter-layer couplings among
superconducting phase differences mediated by the charging effect. We show that
there exist three characteristic regions, which are identified by jumps and
cusps in the I-V curve. In the low voltage region, the total current is
periodic with trigonometric functional increases and rapid drops. Then a kind
of chaotic region is followed. Above certain voltage, the total current behaves
with a simple harmonic oscillation and the I-V characteristics form a
multi-branch structure as in the current-biased case. The above behavior is the
result of the inter-layer coupling, and may be used to confirm the inter-layer
coupling mechanism of the formation of hysteresis branches.Comment: 12 pages, Latex, 4 figure
COLA with massive neutrinos
The effect of massive neutrinos on the growth of cold dark matter
perturbations acts as a scale-dependent Newton's constant and leads to
scale-dependent growth factors just as we often find in models of gravity
beyond General Relativity. We show how to compute growth factors for
CDM and general modified gravity cosmologies combined with massive
neutrinos in Lagrangian perturbation theory for use in COLA and extensions
thereof. We implement this together with the grid-based massive neutrino method
of Brandbyge and Hannestad in and compare COLA simulations
to full -body simulations of CDM and gravity with
massive neutrinos. Our implementation is computationally cheap if the
underlying cosmology already has scale-dependent growth factors and it is shown
to be able to produce results that match -body to percent level accuracy
for both the total and CDM matter power-spectra up to Mpc.Comment: 29 pages, 15 figures, 1 table, version accepted for publication in
JCAP, added frame-lagging terms in 2LPT sections (results unaffected) and
appendix on comparison to SP
- âŠ