1,046 research outputs found

    Influence of international markets on ecological sustainability of agricultural production

    Get PDF

    Local solid-state modification of nanopore surface charges

    Full text link
    The last decade, nanopores have emerged as a new and interesting tool for the study of biological macromolecules like proteins and DNA. While biological pores, especially alpha-hemolysin, have been promising for the detection of DNA, their poor chemical stability limits their use. For this reason, researchers are trying to mimic their behaviour using more stable, solid-state nanopores. The most successful tools to fabricate such nanopores use high energy electron or ions beams to drill or reshape holes in very thin membranes. While the resolution of these methods can be very good, they require tools that are not commonly available and tend to damage and charge the nanopore surface. In this work, we show nanopores that have been fabricated using standard micromachning techniques together with EBID, and present a simple model that is used to estimate the surface charge. The results show that EBID with a silicon oxide precursor can be used to tune the nanopore surface and that the surface charge is stable over a wide range of concentrations.Comment: 10 pages, 6 figure

    Results from the test bench of the Geometry Monitoring System of the ALICE Muon Spectrometer

    No full text
    We present the results obtained with the test bench of the Geometry Monitoring System (GMS) for the ALICE Muon Spectrometer. It consists in a mock up, reproducing at full scale, three half planes of the chambers 6, 7 and 8 of the spectrometer. We show that the GMS is able to measure transverse displacements with an accuracy of 1.5 microm. We show also that the resolution deteriorates by a factor 3 to 4 when thermal gradients are generated

    How Trade and Investment Agreements Affect Bilateral Foreign Direct Investment: Results from a Structural Gravity Model

    Get PDF
    The paper develops a new stand-alone structural gravity model for explaining bilateral FDI patterns. We employ the model to analyse the impact of preferential trade agreements (PTAs), bilateral investment treaties (BITs) and other policies on bilateral foreign direct investment (FDI). We use the UNCTAD global database on bilateral FDI stocks and flows. To control for the heterogeneous nature of PTAs, we employ two different indicators of PTA depth. We find that on average signing a PTA increases bilateral FDI stocks by around 30%. Nevertheless, we also find that ‘deeper’ or comprehensive PTAs (e.g., including provisions on investment, public procurement and intellectual property rights provisions) do not have a significantly different impact than signing regular PTAs. Belonging to the EU single market, on the other hand, has a strong impact and increases bilateral FDI by around 135%, and signing a BIT has an effect that is comparable to signing a PTA

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for e⃗p\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007
    • 

    corecore