14 research outputs found

    Flow evolution of a metallic slurry during thixoextrusion of an automotive valve

    No full text
    The aim of this work is to characterize a metallic slurry (Al-4.5%Cu) flow during thixoforming of an automotive valve. The necessary globular structure was obtained by first inoculating the alloy with TIBAL (5%Ti, 1%B, Al - rest) at 750.0°C, and then reheating to a state between liquidus and solidus prior to thixoforming. Two metallic slurries, with a solid phase of approximately 86.1 and 78.2 percent, were used to generate different experimental flow patterns during the thixoforming process. The flow of the material into the die was observed for total, and partial displacement (2.7, 5.4, 7.5mm) of the punch. The first displacement shows formation of the valve rod. The patterns at each step of displacement of the punch were preserved by quenching in water, thus revealing the profile of the die fill and microstructural evolution. Degeneration of the globular phase was observed along the piece thixoextruded. Thixoextrusion forces versus time curves were generated for partial and full displacement of the punch. Porosity was visible along the billet prior to thixoforming. However, some areas show that the porosity gradually decreased to zero as the thixoextrusion pressure increased. Turbulent, transient and laminar flow are analyzed in this work

    Dynamic evolution of the alpha (a) and beta (ß) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles

    Get PDF
    Background: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (a) keratins are found in all vertebrates, while beta (ß) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken.Results: We found that the total number of a-keratins is lower in birds than mammals and non-avian reptiles, yet two a-keratin genes (KRT42 and KRT75) have expanded in birds. The ß-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather ß-keratins comprise a large majority of the total number of ß-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather ß-keratin genes and larger proportions of keratinocyte ß-keratin genes. Additionally, birds of prey have a larger proportion of claw ß-keratins. Analysis of a- and ß-keratin expression during development of chicken scales and feathers demonstrates that while a-keratins are expressed in these tissues, the number and magnitude of expressed ß-keratin genes far exceeds that of a-keratins.Conclusions: These results support the view that the number of a- and ß-keratin genes expressed, the proportion of the ß-keratin subfamily genes expressed and the diversification of the ß-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches
    corecore