11,759 research outputs found

    The Bargmann representation for the quantum mechanics on a sphere

    Get PDF
    The Bargmann representation is constructed corresponding to the coherent states for a particle on a sphere introduced in: K. Kowalski and J. Rembielinski, J. Phys. A: Math. Gen. 33, 6035 (2000). The connection is discussed between the introduced formalism and the standard approach based on the Hilbert space of square integrable functions on a sphere S^2.Comment: LaTe

    Coherent states for the q-deformed quantum mechanics on a circle

    Full text link
    The q-deformed coherent states for a quantum particle on a circle are introduced and their properties investigated.Comment: 11 pages, 2 PostScript figure

    Coherent states of a charged particle in a uniform magnetic field

    Full text link
    The coherent states are constructed for a charged particle in a uniform magnetic field based on coherent states for the circular motion which have recently been introduced by the authors.Comment: 2 eps figure

    A Lagrangian approach to modeling heat flux driven close-contact melting

    Full text link
    Close-contact melting refers to the process of a heat source melting its way into a phase-change material. Of special interest is the close-contact melting velocity, or more specifically the relative velocity between the heat source and the phase-change material. In this work, we present a novel numerical approach to simulate quasi-steady, heat flux driven close-contact melting. It extends existing approaches found in the literature, and, for the first time, allows to study the impact of a spatially varying heat flux distribution. We will start by deriving the governing equations in a Lagrangian reference frame fixed to the heat source. Exploiting the narrowness of the melt film enables us to reduce the momentum balance to the Reynolds equation, which is coupled to the energy balance via the velocity field. We particularize our derivation for two simple, yet technically relevant geometries, namely a 3d circular disc and a 2d planar heat source. An iterative solution procedure for the coupled system is described in detail and discussed on the basis of a convergence study. Furthermore, we present an extension to allow for rotational melting modes. Various test cases demonstrate the proficiency of our method. In particular, we will utilize the method to assess the efficiency of the close-contact melting process and to quantify the model error introduced if convective losses are neglected. Finally, we will draw conclusions and present an outlook to future work
    • …
    corecore