187 research outputs found
Real-time flow MRI of the aorta at a resolution of 40 msec.
PURPOSE: To evaluate a novel real-time phase-contrast magnetic resonance imaging (MRI) technique for the assessment of through-plane flow in the ascending aorta. MATERIALS AND METHODS: Real-time MRI was based on a radial fast low-angle shot (FLASH) sequence with about 30-fold undersampling and image reconstruction by regularized nonlinear inversion. Phase-contrast maps were obtained from two (interleaved or sequential) acquisitions with and without a bipolar velocity-encoding gradient. Blood flow in the ascending aorta was studied in 10 healthy volunteers at 3 T by both real-time MRI (15 sec during free breathing) and electrocardiogram (ECG)-synchronized cine MRI (with and without breath holding). Flow velocities and stroke volumes were evaluated using standard postprocessing software. RESULTS: The total acquisition time for a pair of phase-contrast images was 40.0 msec (TR/TE=2.86/1.93 msec, 10° flip angle, 7 spokes per image) for a nominal in-plane resolution of 1.3 mm and a section thickness of 6 mm. Quantitative evaluations of spatially averaged flow velocities and stroke volumes were comparable for real-time and cine methods when real-time MRI data were averaged across heartbeats. For individual heartbeats real-time phase-contrast MRI resulted in higher peak velocities for values above 120 cm s(-1) . CONCLUSION: Real-time phase-contrast MRI of blood flow in the human aorta yields functional parameters for individual heartbeats. When averaged across heartbeats real-time flow velocities and stroke volumes are comparable to values obtained by conventional cine MRI
Assessment of cardiovascular physiology using dobutamine stress cardiovascular magnetic resonance reveals impaired contractile reserve in patients with cirrhotic cardiomyopathy.
BACKGROUND: Liver cirrhosis has been shown to affect cardiac performance. However cardiac dysfunction may only be revealed under stress conditions. The value of non-invasive stress tests in diagnosing cirrhotic cardiomyopathy is unclear. We sought to investigate the response to pharmacological stimulation with dobutamine in patients with cirrhosis using cardiovascular magnetic resonance.
METHODS: Thirty-six patients and eight controls were scanned using a 1.5 T scanner (Siemens Symphony TIM; Siemens, Erlangen, Germany). Conventional volumetric and feature tracking analysis using dedicated software (CMR42; Circle Cardiovascular Imaging Inc, Calgary, Canada and Diogenes MRI; Tomtec; Germany, respectively) were performed at rest and during low to intermediate dose dobutamine stress.
RESULTS: Whilst volumetry based parameters were similar between patients and controls at rest, patients had a smaller increase in cardiac output during stress (p = 0.015). Ejection fraction increase was impaired in patients during 10 μg/kg/min dobutamine as compared to controls (6.9 % vs. 16.5 %, p = 0.007), but not with 20 μg/kg/min (12.1 % vs. 17.6 %, p = 0.12). This was paralleled by an impaired improvement in circumferential strain with low dose (median increase of 14.4 % vs. 30.9 %, p = 0.03), but not with intermediate dose dobutamine (median increase of 29.4 % vs. 33.9 %, p = 0.54). There was an impaired longitudinal strain increase in patients as compared to controls during low (median increase of 6.6 % vs 28.6 %, p \u3c 0.001) and intermediate dose dobutamine (median increase of 2.6%vs, 12.6 % p = 0.016). Radial strain response to dobutamine was similar in patients and controls (p \u3e 0.05).
CONCLUSION: Cirrhotic cardiomyopathy is characterized by an impaired cardiac pharmacological response that can be detected with magnetic resonance myocardial stress testing. Deformation analysis parameters may be more sensitive in identifying abnormalities in inotropic response to stress than conventional methods
Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study.
BACKGROUND: Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics.
METHODS: 10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [εs], peak positive SR [SRs]), LA conduit function (passive strain [εe], peak early negative SR [SRe]) and LA booster pump function (active strain [εa], late peak negative SR [SRa]).
RESULTS: In all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (εs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p \u3c 0.01; SRs [s⁻¹]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p \u3c 0.05) and impaired LA conduit function as compared to healthy controls (εe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p \u3c 0.001; SRe [s]⁻¹: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p \u3c 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (εa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p \u3c 0.01; SRa [s⁻¹]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p \u3c 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses.
CONCLUSIONS: CMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states
Impact of Right Atrial Physiology on Heart Failure and Adverse Events after Myocardial Infarction
Background: Right ventricular (RV) function is a known predictor of adverse events in heart failure and following acute myocardial infarction (AMI). While right atrial (RA) involvement is well characterized in pulmonary arterial hypertension, its relative contributions to adverse events following AMI especially in patients with heart failure and congestion need further evaluation. Methods: In this cardiovascular magnetic resonance (CMR)-substudy of AIDA STEMI and TATORT NSTEMI, 1235 AMI patients underwent CMR after primary percutaneous coronary intervention (PCI) in 15 centers across Germany (n = 795 with ST-elevation myocardial infarction and 440 with non-ST-elevation MI). Right atrial (RA) performance was evaluated using CMR myocardial feature tracking (CMR-FT) for the assessment of RA reservoir (total strain εs), conduit (passive strain εe), booster pump function (active strain εa), and associated strain rates (SR) in a blinded core-laboratory. The primary endpoint was the occurrence of major adverse cardiac events (MACE) 12 months post AMI. Results: RA reservoir (εs p = 0.061, SRs p = 0.049) and conduit functions (εe p = 0.006, SRe p = 0.030) were impaired in patients with MACE as opposed to RA booster pump (εa p = 0.579, SRa p = 0.118) and RA volume index (p = 0.866). RA conduit function was associated with the clinical onset of heart failure and MACE independently of RV systolic function and atrial fibrillation (AF) (multivariable analysis hazard ratio 0.95, 95% confidence interval 0.92 to 0.99, p = 0.009), while RV systolic function and AF were not independent prognosticators. Furthermore, RA conduit strain identified low- and high-risk groups within patients with reduced RV systolic function (p = 0.019 on log rank testing). Conclusions: RA impairment is a distinct feature and independent risk factor in patients following AMI and can be easily assessed using CMR-FT-derived quantification of RA strain
Cardiovascular Magnetic Resonance Imaging Feature Tracking: Impact of Training on Observer Performance and Reproducibility
BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is increasingly used for myocardial deformation assessment including ventricular strain, showing prognostic value beyond established risk markers if used in experienced centres. Little is known about the impact of appropriate training on CMR-FT performance. Consequently, this study aimed to evaluate the impact of training on observer variance using different commercially available CMR-FT software.
METHODS: Intra- and inter-observer reproducibility was assessed prior to and after dedicated one-hour observer training. Employed FT software included 3 different commercially available platforms (TomTec, Medis, Circle). Left (LV) and right (RV) ventricular global longitudinal as well as LV circumferential and radial strains (GLS, GCS and GRS) were studied in 12 heart failure patients and 12 healthy volunteers.
RESULTS: Training improved intra- and inter-observer reproducibility. GCS and LV GLS showed the highest reproducibility before (ICC \u3e0.86 and \u3e0.81) and after training (ICC \u3e0.91 and \u3e0.92). RV GLS and GRS were more susceptible to tracking inaccuracies and reproducibility was lower. Inter-observer reproducibility was lower than intra-observer reproducibility prior to training with more pronounced improvements after training. Before training, LV strain reproducibility was lower in healthy volunteers as compared to patients with no differences after training. Whilst LV strain reproducibility was sufficient within individual software solutions inter-software comparisons revealed considerable software related variance.
CONCLUSION: Observer experience is an important source of variance in CMR-FT derived strain assessment. Dedicated observer training significantly improves reproducibility with most profound benefits in states of high myocardial contractility and potential to facilitate widespread clinical implementation due to optimized robustness and diagnostic performance
- …