284 research outputs found

    The theory of prime ends and spatial mappings

    Full text link
    It is given a canonical representation of prime ends in regular spatial domains and, on this basis, it is studied the boundary behavior of the so-called lower Q-homeomorphisms that are the natural generalization of the quasiconformal mappings. In particular, it is found a series of effective conditions on the function Q(x) for a homeomorphic extension of the given mappings to the boundary by prime ends in domains with regular boundaries. The developed theory is applied, in particular, to mappings of the classes of Sobolev and Orlicz-Sobolev and also to finitely bi-Lipschitz mappings that a far-reaching extension of the well--known classes of isometric and quasiisometric mappings.Comment: 40 pages, we improve modulus estimates and on this basis prove a series of new criteria for homeomorphic extension of spatial mappings to the boundary by prime ends in terms of inner dilatation

    Post-BEMUSE Reflood Model input uncertainty methods (PREMIUM) Benchmark Phase II: identification of influential Parameters

    Get PDF
    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases: - Phase I: mainly, definition of the different uncertainty methods; - Phase II: determination of the physical models influential in reflooding using the test 216 of the FEBA programme; - Phase III: quantification of the uncertainties of the parameters associated with the physical models identified as influential within Phase II, using FEBA/SEFLEX experimental results; - Phase IV: validation of the found uncertainties within Phase III by propagating them in the 2-D PERICLES reflood experiment; this phase will be performed blindly except for the coordinators; - Phase V: synthesis report. This report presents the results of Phase II. Phase II is dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications “as is”, some modified the quantitative thresholds proposed in Specifications, and others used their own methodologies. This fact was a partial reason for the different ranges of input parameter variation identified by participants, in addition to differences of the physical models adopted by the different codes. Therefore, such different variation ranges of IP and, correspondingly, such different variation ranges of cladding temperature and time of rewet, make rather difficult the task of meaningful and easy-comprehendible comparison of Phase II results. Out of a total of 72 input parameters, initially considered by all participants, only 6 were identified as influential by more than 4 participants that are: - bundle power; - wall heat transfer coefficient; - interphase friction coefficient; - interphase heat transfer coefficient; - heat transfer (enhancement) at the quench front; - droplet diameter. It should be noted that actual parameters considered in parameter “Heat transfer (enhancement) at the quench front” are code-specific and may have different influence on calculation results. Several participants discarded some identified influential parameters (e.g., droplet diameter) due to existing relation between this kind of parameters so-called “Input Coefficient Parameters” and more global parameters (e.g. interfacial friction coefficient and interphase heat transfer coefficient which use the droplet diameter) so-called “Input Global Parameters”. Some participants also discarded identified influential so-called “Input Basic Coefficients” (e.g. bundle power) since their uncertainty has not to be determined in the Phase III but will be provided by the coordinator from experimental data. The behaviour of the variation of the responses at the extremes of IP range of variation greatly depends on the type of input parameter and on the code used. Mainly, the following two different behaviours can be characterized: - For some parameters, like power, wall heat transfer and interphase heat transfer coefficients, a qualitative (but not quantitative) agreement between different codes is observed. - For other parameters, like interphase friction coefficient and droplet diameter, a contrary behaviour (i.e. in correspondence of one of the extreme of the IP range, the direction of change of the responses is different) between different codes and even between different selected models within the same code can be observed. This suggests that the effect of such parameters on the cladding temperatures is quite complex, probably because it involves a lot of physical models (e.g., via interphase friction and interphase heat transfer coefficients for the droplet diameter). It shall be noted that the analysis of differences between the reflood models of different codes is out of scope of the PREMIUM benchmark. Nevertheless, it is recommended to take into account the physical models/ input parameters found as influential by the other participants in order to select the influential input parameters for which uncertainties are to be quantified within the Phase III of PREMIUM. In particular, input parameters identified as influential by other participants using the same code should be considered

    An Integrated Software Platform for Best Estimate Safety Analyses of Nuclear Power Plants

    Get PDF
    Nuclear power plant safety is granted through the demonstration that regulatory acceptance criteria are fulfilled by the provided (calculated) analyses of the NPP performances and sufficient safety margins are respected during normal operation, anticipated transients and postulated accident conditions. Safety margins are very hard to determine in absolute terms, numerical calculations are used to assess their values. Over the last 30 years an extensive effort has been carried out aiming to improve the knowledge of the nuclear power plant behaviour under transient scenarios. The development of Best Estimate (BE) computer codes are the direct consequence of these noteworthy efforts. The availability of more sophisticated and specialized computer codes gives the analyst the possibility to perform very detailed analysis in all the fields involved in the safety of a NPP: thermal-hydraulics, CFD, 3D neutron kinetics etc. The possibility to create a software environment where a multidisciplinary problem can be solved adopting different specialized codes able to exchange data among them is a fruitful approach to the problem aiming to improve the results. The computational tools, adopted in best-estimate approach in licensing, include a) the best estimate computer codes; b) the nodalizations together with the procedures for the development and the qualification; c) the uncertainty methodology. The Nuclear Research Group of San Piero a Grado of the University of Pisa has developed a software platform with 15 interacting computer codes. Such platform covers the reactor simulation multidisciplinary problem from generation of neutron cross-sections, through system thermal-hydraulic analyses, up to detailed structural and fuel mechanics studies and it embeds software procedures for automatized data transfer between codes. Together with methodological procedures for nodalizations development and qualification the platform leads to a great decrease of the human induced error in the results. The developed platform has been tested and successfully applied to perform the safety analyses required by the Chapter 15 of the Final Safety Analysis Report of the CNA-2 nuclear power plant in Argentina

    Recent Applications of RELAP5-3D at GRNSPG

    Get PDF
    CNA2 : FSAR activities Standard Consolidated Reference Experimental Database MASLWR benchmark OECD benchmarks CHF calculation in low mass flux condition Turbulence effects in Relap5-3

    Addition of romiplostim to conditioning prior to HSCT allows chemotherapy reduction while maintaining engraftment levels

    Full text link
    Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment approach for certain benign and malignant hematologic diseases. The actual HSCT is preceded by a conditioning therapy that reduces host-vs-HSCT graft rejection and creates niche space for transplanted hematopoietic stem and progenitor cells (HSPCs). Conditioning consists of chemotherapy with or without irradiation and is a major cause of side effects in HSCT. However, reduction of the intensity of cytotoxic conditioning leads to higher rates of engraftment failure and increased rates of relapse. We here tested if the addition of an HSC cycling inducing agent during conditioning allows to diminish the dose of conditioning drugs without reducing subsequent transplanted HSC engraftment in a mouse HSCT model. The thrombopoietin receptor agonist romiplostim was shown to induce cell cycling activity in hematopoietic stem cells (HSCs). We thus tested if the addition of romiplostim to the clinically applied conditioning chemotherapy regimen cyclophosphamide and busulfan leads to increased efficacy of the chemotherapeutic regimen. We found that romiplostim not only sensitizes HSCs to chemotherapy but also enables a reduction of the main chemotherapeutic component busulfan by half while HSC engraftment levels are maintained in long-term, serial transplantation assays
    • …
    corecore