38 research outputs found

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Hypothyroidism and Wound Healing After Salvage Laryngectomy

    No full text
    BACKGROUND:Patients undergoing salvage laryngectomy are predisposed to radiation-induced hypothyroidism and impaired wound healing secondary to the tissue effects of prior treatment. The impact of hypothyroidism on postoperative wound healing is not established. METHODS:A single-institution retrospective case series was performed. The inclusion criteria specified preoperatively euthyroid adults who underwent salvage laryngectomy with concurrent neck dissection between 1997 and 2015 for persistent or recurrent laryngeal squamous cell carcinoma after radiation or chemoradiation therapy (n = 182). The principal explanatory variable was postoperative hypothyroidism, defined as thyroid-stimulating hormone (TSH) higher than 5.5 mIU/L. The primary end points of the study were pharyngocutaneous fistulas and wounds requiring reoperation. Multivariate analysis was performed. RESULTS:The fistula rate was 47% among hypothyroid patients versus 23% among euthyroid patients. In the multivariate analysis, the patients who experienced hypothyroidism in the postoperative period had a 3.6-fold greater risk of fistula [95% confidence interval (CI) 1.8-7.1; p = 0.0002]. The hypothyroid patients had an 11.4-fold greater risk for a required reoperation (24.4 vs 5.4%) than the euthyroid patients (95% CI 2.6-49.9; p = 0.001). The risk for fistula (p = 0.003) and reoperation (p = 0.001) increased with increasing TSH. This corresponds to an approximate 12.5% incremental increase in the absolute risk for fistula and a 10% increase in the absolute risk for reoperation with each doubling of the TSH. CONCLUSION:Postoperative hypothyroidism independently predicts postoperative wound-healing complications. The association of hypothyroidism with fistula formation may yield opportunities to modulate wound healing with thyroid supplementation or to provide a biomarker of wound progression
    corecore