85 research outputs found

    PGE2 Promotes Apoptosis Induced by Cytokine Deprivation through EP3 Receptor and Induces Bim in Mouse Mast Cells

    Get PDF
    Increased mast cell numbers are observed at sites of allergic inflammation and restoration of normal mast cell numbers is critical to the resolution of these responses. Early studies showed that cytokines protect mast cells from apoptosis, suggesting a simple model in which diminished cytokine levels during resolution leads to cell death. The report that prostaglandins can contribute both to recruitment and to the resolution of inflammation together with the demonstration that mast cells express all four PGE2 receptors raises the question of whether a single PGE2 receptor mediates the ability of PGE2 to regulate mast cell survival and apoptosis. We report here that PGE2 through the EP3 receptor promotes cell death of mast cells initiated by cytokine withdrawal. Furthermore, the ability of PGE2 to limit reconstitution of tissues with cultured mast cells is lost in cell lacking the EP3 receptor. Apoptosis is accompanied by higher dissipation of mitochondrial potential (ΔΨm), increased caspase-3 activation, chromatin condensation, and low molecular weight DNA cleavage. PGE2 augmented cell death is dependent on an increase in intracellular calcium release, calmodulin dependent kinase II and MAPK activation. Synergy between the EP3 pathway and the intrinsic mitochondrial apoptotic pathway results in increased Bim expression and higher sensitivity of mast cells to cytokine deprivation. This supports a model in which PGE2 can contribute to the resolution of inflammation in part by augmenting the removal of inflammatory cells in this case, mast cells

    Enhanced mast cell activation in mice deficient in the A2b adenosine receptor

    Get PDF
    Antigen-mediated cross-linking of IgE bound to mast cells via the high affinity receptor for IgE triggers a signaling cascade that results in the release of intracellular calcium stores, followed by an influx of extracellular calcium. The collective increase in intracellular calcium is critical to the release of the granular contents of the mast cell, which include the mediators of acute anaphylaxis. We show that the sensitivity of the mast cell to antigen-mediated degranulation through this pathway can be dramatically influenced by the A2b adenosine receptor. Loss of this Gs-coupled receptor on mouse bone marrow–derived mast cells results in decreased basal levels of cyclic AMP and an excessive influx of extracellular calcium through store-operated calcium channels following antigen activation. Mice lacking the A2b receptor display increased sensitivity to IgE-mediated anaphylaxis. Collectively, these findings show that the A2b adenosine receptor functions as a critical regulator of signaling pathways within the mast cell, which act in concert to limit the magnitude of mast cell responsiveness when antigen is encountered

    PGE2 through the EP4 receptor controls smooth muscle gene expression patterns in the ductus arteriosus critical for remodeling at birth

    Get PDF
    The ductus arteriosus (DA) is a fetal shunt that directs right ventricular outflow away from pulmonary circulation and into the aorta. Critical roles for prostaglandin E2 (PGE2) and the EP4 receptor (EP4) have been established in maintaining both the patency of the vessel in utero and in its closure at birth. Here we have generated mice in which loss of EP4 expression is limited to either the smooth muscle (SMC) or endothelial cells and demonstrated that SMC, but not endothelial cell expression of EP4 is required for DA closure. The genome wide expression analysis of full term wild type and EP4−/− DA indicates that PGE2/EP4 signaling modulates expression of a number of unique pathways, including those involved in SMC proliferation, cell migration, and vascular tone. Together this supports a mechanism by which maturation and increased contractility of the vessel is coupled to the potent smooth muscle dilatory actions of PGE2

    Cholesterol deficiency in a mouse model of Smith-Lemli-Opitz syndrome reveals increased mast cell responsiveness

    Get PDF
    Mutation of the 3β-hydroxysterol Δ7-reductase gene (Dhcr7−/−) results in Smith-Lemli-Opitz syndrome (SLOS). Patients, and genetically altered mice, are unable to produce cholesterol and accumulate 7-dehydrocholesterol (DHC) in serum and tissue. This causes multiple growth and developmental abnormalities as well as immune system anomalies including allergy. Because cholesterol is a key component of liquid-ordered membranes (lipid rafts) and these domains have been implicated in regulating mast cell activation, we examined whether mast cell responsiveness is altered in this model. Mast cells derived from Dhcr7−/− mice (DHCR KO) showed constitutive cytokine production and hyper-degranulation after stimulation of the high affinity IgE receptor (FcɛRI). DHCR KO mast cells, but not wild-type mast cells, accumulated DHC in lipid rafts. DHC partially disrupted lipid raft stability and displaced Lyn kinase protein and activity from lipid rafts. This led to down-regulation of some Lyn-dependent signaling events but increased Fyn kinase activity and Akt phosphorylation. The Lyn-dependent phosphorylation of Csk-binding protein, which negatively regulates Fyn activity, was decreased. This phenotype reproduces some of the characteristics of Lyn-null mast cells, which also demonstrate hyper-degranulation. These findings provide the first evidence of lipid raft dysfunction in SLOS and may explain the observed association of allergy with SLOS

    Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA

    Get PDF
    The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect

    HIV pre-exposure prophylaxis for women and infants prevents vaginal and oral HIV transmission in a preclinical model of HIV infection

    Get PDF
    Approximately 1.5 million HIV-positive women become pregnant annually. Without treatment, up to 45% will transmit HIV to their infants, primarily through breastfeeding. These numbers highlight that HIV acquisition is a major health concern for women and children globally. They also emphasize the urgent need for novel approaches to prevent HIV acquisition that are safe, effective and convenient to use by women and children in places where they are most needed

    ONZIN deficiency attenuates contact hypersensitivity responses in mice

    Get PDF
    ONZIN is abundantly expressed in immune cells of both the myeloid and lymphoid lineage. Expression by lymphoid cells has been reported to further increase after cutaneous exposure of mice to antigens and haptens capable of inducing contact hypersensitivity, suggesting that ONZIN plays a critical role in this response. Here, we report that indeed ONZIN-deficient mice develop attenuated CHS to a number of different haptens. Dampened CHS responses correlated with a significant reduction in pro-inflammatory IL-6 at the challenge site in ONZIN-deficient animals compared to wild type controls. Together the study of these animals indicates that loss of ONZIN impacts the effector phase of the CHS response through the regulation of pro-inflammatory factors

    A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges

    Get PDF
    Pre-exposure prophylaxis (PrEP) using antiretroviral drugs (ARVs) has been shown to reduce HIV transmission in people at high risk of HIV infection. Adherence to PrEP strongly correlates with the level of HIV protection. Long-acting injectable ARVs provide sustained systemic drug exposures over many weeks and can improve adherence due to infrequent parenteral administration. Here, we evaluated a new long-acting formulation of raltegravir for prevention of vaginal HIV transmission

    Negative Regulation of Immunoglobulin E–dependent Allergic Responses by Lyn Kinase

    Get PDF
    A role for Lyn kinase as a positive regulator of immunoglobulin (Ig)E-dependent allergy has long been accepted. Contrary to this belief, Lyn kinase was found to have an important role as a negative regulator of the allergic response. This became apparent from the hyperresponsive degranulation of lyn−/− bone marrow–derived mast cells, which is driven by hyperactivation of Fyn kinase that occurs, in part, through the loss of negative regulation by COOH-terminal Src kinase (Csk) and the adaptor, Csk-binding protein. This phenotype is recapitulated in vivo as young lyn−/− mice showed an enhanced anaphylactic response. In vivo studies also demonstrated that as lyn−/− mice aged, their serum IgE increased as well as occupancy of the high affinity IgE receptor (FcεRI). This was mirrored by increased circulating histamine, increased mast cell numbers, increased cell surface expression of the high affinity IgE receptor (FcεRI), and eosinophilia. The increased IgE production was not a consequence of increased Fyn kinase activity in lyn−/− mice because both lyn−/− and lyn−/− fyn−/− mice showed high IgE levels. Thus, lyn−/− mice and mast cells thereof show multiple allergy-associated traits, causing reconsideration of the possible efficacy in therapeutic targeting of Lyn in allergic disease

    Cooperation between Mast Cells and Neurons Is Essential for Antigen-Mediated Bronchoconstriction

    Get PDF
    Mast cells are important sentinels guarding the interface between the environment and the body: a breach in the integrity of this interface can lead to the release of a plethora of mediators which engage the foreign agent, recruit leukocytes, and initiate adaptive physiological changes in the organism. While these capabilities make mast cells critical players in immune defense, it also makes them important contributors to the pathogenesis of diseases such as asthma. Mast cell mediators induce dramatic changes in smooth muscle physiology, and the expression of receptors for these factors by smooth muscle suggests that they act directly to initiate constriction. Contrary to this view, we show here that mast cell-mediated bronchoconstriction is observed only in animals with intact innervation of the lung and that serotonin release alone is required for this action. While ablation of sensory neurons does not limit bronchoconstriction, constriction after antigen challenge is absent in mice in which the cholinergic pathways are compromised. Linking mast cell function to the cholinergic system likely provides an important means of modulating the function of these resident immune cells to physiology of the lung, but may also provide a safeguard against life-threatening anaphylaxis during mast cell degranulation
    • …
    corecore